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1 INTRODUCTION 

Unreinforced masonry (URM) buildings are cost effective and offer excellent environmental features: sustai-
nability, energy efficiency, good indoor climate and fire resistance [1]. As a result, residential buildings are 
often constructed with URM walls. Their main drawback results from the vulnerability when subjected to 
seismic loading. Before the introduction of modern seismic design guidelines in Switzerland in 1989 [2] and 
in particular their revised version in 2003 [3], such URM buildings passed in general the force-based seismic 
design check without any difficulties. The Swiss loading standard of 2003 introduced higher seismic design 
forces for non-ductile structures. As a result most URM buildings did no longer satisfy the force-based seis-
mic design check and in new construction projects a number of URM walls—though typically the minority 
of them—was replaced by RC walls (Figure 1.1 and Figure 1.2). A large part of the existing residential 
buildings are hence either URM buildings with RC slabs or buildings with both RC and URM walls and RC 
slabs.  

 

 

Figure 1.1: Residential buildings in Switzerland with RC and URM walls (Photos: T. Wenk) 

 

 

Figure 1.2: Residential building in Switzerland with RC and URM walls (Photo: T. Wenk) 
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Today the seismic safety of a larger number of URM buildings or mixed RC-URM wall buildings needs to 
be assessed. The global behaviour of these buildings is controlled by the in-plane failure of the URM walls. 
While force-based design approaches are well adopted by practising engineers, displacement-based ap-
proaches are known to lead to less conservative, and therefore, more realistic designs and assessment. How-
ever, currently available displacement-based design approaches for URM structures (e.g. [4]–[7]) offer 
methodologies, which require some additional information before becoming universally applicable to URM 
structures. Additional information is in particular required with respect to the deformation capacity of URM 
piers and by the coupling effect by slabs and URM spandrels.  

The displacement-based assessment approach for URM buildings that is commonly used in Swiss engineer-
ing practice is documented in SIA D0237 “Beurteilung von Mauerwerksgebäuden bezüglich Erdbeben 
(Seismic assessment of masonry buildings)” [7]. In this approach, the coupling effect is currently included 
on a global level by choosing the height of zero moment of the URM wall [7], which is typically set to one 
storey height. Equivalent frame models of URM buildings (e.g. [8]–[10]) model the framing effect explicite-
ly by including horizontal elements in the numerical model that represent stiffness and strength of slabs and 
spandrels. Several projects of engineering consulting offices in Switzerland showed that the pushover curves 
obtained with these two methods varied greatly. In particular it was found that the pushover curves obtained 
by means of the hand-calculation method proposed in SIA D0237 yielded typically much more conservative 
results that the results of the program 3muri. 

The second failure mode of URM buildings relates to the out-of-plane response of URM walls. Typically 
out-of-plane failure does not trigger the entire collapse of a building as mostly only top storey walls are 
affected. However, the out-of-plane vulnerability of URM piers could prove to be the Achilles’ heel of typi-
cal Swiss URM structures. Dazio [11] showed that most Swiss walls do not fulfil the slenderness criteria in 
Eurocode 8 [12]. He also showed that the current slenderness criteria in all international design codes fail to 
capture the boundary conditions of the walls, which have an important influence on the out-of-plane behav-
iour of URM walls. Premature out-of-plane failure might prevent the structure from reaching its full in-plane 
strength.  

 

1.1 The OFEV-project and its report 
Over the last five years, several research projects that were carried out at the Earthquake Engineering and 
Structural Dynamics laboratory (EESD) of EPFL treated the seismic performance of modern URM buildings 
in Switzerland. The type of masonry that was addressed used modern hollow core clay bricks and standard 
cement mortar. The mortar joints were of normal thickness (~1cm) and the vertical joints were fully filled 
(“Doppelspatz”). The RC slabs of the addressed buildings were stiff and had thicknesses between 20-30 cm. 
As reference buildings served buildings with four storeys since most of the residential buildings constructed 
with URM walls have 3-5 storeys.  

Next to the OFEV-project, the following EESD-projects addressed the behaviour of modern URM buildings 
and buildings with URM and RC walls: 

- The PhD project by Sarah Petry: This project addressed the in-plane drift capacity of modern storey-
high URM walls. Full-scale tests on clay brick masonry walls were conducted and empirical and 
mechanical drift capacity models developed.  

- The PhD project by Alessandro Paparo: This project addressed the behaviour of buildings with URM 
and RC walls. Tests on subassemblies of such buildings were performed, different numerical models 
validated against these tests and a displacement-based assessment approach for such mixed struc-
tures developed.  

- The CoMa-WallS project with main contributions by Marco Tondelli, Sarah Petry, Simone Peloso 
(EUCENTRE): Within the framework of an FP7-project a shake table test on a four-storey structure 
built at half scale was conducted. The four-storey structure had URM and RC walls and RC slabs 
and was therefore representative for the typology of modern residential buildings in Switzerland. 
More information on this project is given below.   

The objective of the shake table test conducted within the FP7-Series project “Seismic behaviour of mixed 
reinforced concrete – unreinforced masonry wall structures” was to investigate the seismic behaviour of 
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mixed RC-URM wall structures, which have not been tested in the past. In a mixed structure with RC and 
URM walls, the stiffnesses of the two parallel systems are comparable. For this reason the system stiffness 
and behaviour will strongly depend on both types of structural elements. At the same time, the mixed struc-
ture will allow evaluating the out-of-plane behaviour of URM walls under different boundary conditions in 
buildings with RC slabs.  

The objective of the OFEV-funded project was to develop synergies with the CoMa-WallS project and to 
address aspects that are of particular interest to the Swiss engineering community. The OFEV-project had the 
following objectives: 

- To post-process and curate the data in such a way that it can be easily used by third parties to vali-
date design approaches and numerical models. The data has been made publically available and can 
be accessed through the webpage http://eesd.epfl.ch/data_sets. In addition, a publication with infor-
mation on the test setup, instrumentation, and the data structure of the test has been prepared [13]. 

- To analyse the out-of-plane response of the URM walls during the shake table test. The results of 
this part of the work are presented in two chapters of this report. The first chapter (Chapter 3) pre-
sents the experimental results from the shake table test and the validation of a numerical model. The 
second chapter (Chapter 4) uses the numerical model for a parametric study and compares code pro-
visions for maximum slenderness ratios to these numerical results. 

- To compare the results of the displacement-based assessment approach in SIA D0237 “Beurteilung 
von Mauerwerksgebäuden bezüglich Erdbeben (Seismic assessment of masonry buildings)” [7]  to 
results obtained from numerical models and there in particular to analyses conducted with the soft-
ware 3muri [14]. Several projects of engineering consulting offices in Switzerland showed that the 
pushover curves obtained with these two methods varied greatly. In particular it was found that the 
pushover curves obtained by means of the hand-calculation method proposed in SIA D0237 yielded 
typically much more conservative results that the results of the program 3muri. Chapter 2 of this re-
port compares the different methods by analysing a reference building, discusses the reasons for the 
discrepancies and makes recommendations for the refinement of the method in SIA D0237. This part 
of the work was completed by Francesco Vanin.  

To set the OFEV-project into the context of the other EESD-research projects on URM This first chapter 
summarises briefly the experimental campaigns and the models and design approaches that were derived 
within the scope of these different research projects. A list of all related scientific articles, data sets, PhD 
theses and Master projects that were published by members of the EESD-laboratory can be found in Chapter 
6.  

 

1.2 Summary of PhD project by Sarah Petry 
A major impediment in the application of displacement-based assessment procedures to URM structures are 
the weaknesses of current displacement capacity models for URM piers (for a review of these models see 
[15]). With her thesis, Sarah Petry contributes to the improvement of these models [16]: 

- The performance of two test series on URM walls, one full-scale and one half-scale, which tested for 
the first time boundary conditions other than cantilever or fixed-fixed (Section 1.2.1).  

- The development of new empirical drift capacity models (Section 1.2.2). 
- The development of a mechanical model for predicting the force-displacement response including 

the 1.2.3). 

 

1.2.1 Quasi-static cyclic tests on URM walls 
Six quasi-static cyclic tests on storey-high full-scale URM walls were performed [15]. The objective of these 
tests was to investigate the influence of the boundary conditions on the force-displacement response of in-
plane loaded URM walls. The boundary conditions were characterized in terms of: 

- Applied axial stress ratio; 
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- Shear span. 

The tests complemented existing tests on URM walls in the literature which have all been tested as cantilever 
or with fixed-fixed boundary conditions. The continuous measurements of the coordinates of four LEDs per 
brick allowed to derive also local and deformation measurements (average strains, crack widths). The test 
setup consisted of three servo- hydraulic actuators which were controlled in a fully-coupled mode. The three 
actuators applied an axial force, an in-plane bending moment and an in-plane shear force at the top of the 
wall (Figure 1.3). For the construction of the masonry a hollow core clay brick (Figure 1.5a) and a standard 
cement mortar was used. Figure 1.4 shows the failure modes of the six walls. The data of these tests is publi-
cally available (http://eesd.epfl.ch/data_sets) and all information on the test and the post-processing of the 
data documented in [17].  

 

 

Figure 1.3: Setup for quasi-static cyclic tests on URM walls: Setup for full-scale tests [17] (a) and setup for 
half-scale tests [18] (b).  
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Figure 1.4: Full-scale tests on URM walls: Crack patterns at failure [15], [17].  

 

Due to limitations in size and weight, the building to be tested on the shake table (Section 1.4) had to be 
constructed at half-scale (Section 3.1). Purpose-manufactured bricks at half-scale were used. To develop 
these bricks, numerous tests on clay bricks with different hole patterns were conducted. The objective was to 
develop a brick which had very similar properties as the full-scale brick used for the wall tests presented in 
the previous section (Figure 1.6). Figure 1.5b shows next to the full-scale brick the half-scale brick which 
was finally selected and produced by Morandi Frères SA.  

 

  

Figure 1.5: Hollow core clay bricks for URM walls: (a) Brick for full-scale tests [17] and (b) brick for half-
scale tests [18].  
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Figure 1.6: Half-scale tests: Comparison of hysteresis and crack pattern at failure of half-scale test (PUM1) 
to full-scale test (PUP1) [18].  

 

1.2.2 Empirical drift capacity models 
Current drift capacity models in the Eurocode and other codes around the world assign a drift capacity to the 
shear failure mode and a drift capacity to the flexural failure mode. EC8 – Part 3 [19], for example, assigns 
the following drift capacities at the Significant Damage limit state:  

Cantilever : δୗୈ = 0.4 % (1.1)

Flexural failure : δୗୈ = 0.8 % ∙ ு௟ೢ (1.2)

Lang [5] and later Lang et al. [7] in SIA D0237 propose drift capacity models that are dependent on the axial 
stress ratio and in [7] also on the shear span:  

Cantilever : δୗୈ = 0.8 % ∙ (1 − ఙబ௙೏) (1.3)

Fixed-fixed : δୗୈ = 0.4 % ∙ (1 − ఙబ௙೏) (1.4)

where 0 is the applied axial stress and fd the design value of the compressive strength.  Using a homoge-
nised and larger database on clay brick masonry walls and generalizing the form to a larger range of shear 
spans, we obtained [15]: δ = 0.64 % ∙ (1 − 0.94 (଴݂ௗߪ ∙ ܪ଴ܪ  (1.5)

which is valid for 0.1 ≤ 0/fd ≤ 0.7 and 0.5 ≤ ≤ 1.5. H0 is the height of zero moment measured from the 
base and H the wall height.  

When analysing the wall data base further, it was found that [15]:  

(i) Drift capacities are sensitive to the loading history that is applied. The displacement capacities from mon-
otonic tests are approximately twice as large as those from quasi-static cyclic tests (Figure 1.7). From statis-
tical analysis it is known that the loading histories that are used at present are often too demanding compared 
to the demand that results from earthquakes in low to moderate regions [20]. Also the comparison of walls 
where one was subjected to symmetric cycles and the other one to asymmetric cycles showed that symmetric 
cycles lead to the smallest drift capacity. 

(ii) Drift capacities of smaller walls are larger than drift capacities of larger walls (“size effect”). A size 
effect for clay brick masonry walls had so far only been considered with regard to the ultimate strength but 
not with regard to the displacement capacity [21]. 

Based on these findings a new model was proposed, which accounts for the first time also for the height of a 
wall. In addition a 5% fractile value was determined [15]:  δୗୈ,ହ% = (0.7 − 1.0) % ∙ (1 − 0.9 ଴݂ௗߪ ) ∙ ܪ଴ܪ ∙ ൬2.4 ܪ݉ ൰଴.ହ

 (1.6)
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Figure 1.8 shows the displacement capacities obtained from the quasi-static cyclic tests in comparison to the 
lower bound value of Eq. (1.6).  

   

Figure 1.7: Drift capacity of clay brick masonry walls as a function of wall height H [15]. Drift capacities 
where determined by means of quasi-static cyclic tests. The letters “m” and “c” annotate pairs of walls for 
which one was subjected to monotonic and the other to symmetric cyclic loading.  The letters “s” and “a” 
annotate pairs of walls for which one was subjected to symmetric and the other to asymmetric cycles.  

 

 

Figure 1.8: Drift capacity as a function of wall height H. Comparison of best-fit drift capacities to drift ca-
pacities obtained from quasi-static cyclic tests on piers. 

 

1.2.3 Mechanical drift capacity model for URM walls failing in flexure 
Present drift capacity models in codes, including those that are presented in the previous section, are based 
on empirical approaches. Drift capacity models that are based on sound mechanical principles have the po-
tential (i) to predict more accurately the experimental data than current empirical models, (ii) to account for 
the wide variety of masonry typologies through standard material tests, (iii) to provide insights into the pa-
rameters controlling drift capacities, (iv) to predict drift capacities at several limit states up to axial load 
failure.  

For URM walls failing in flexure, a drift capacity model was developed that is based on an analytical formu-
lation of the force-displacement response [22] (Figure 1.9) and limit state criteria on the local level that have 
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been validated against experimental results [23]. The model builds on previous analytical formulations of the 
force-displacement response by Benedetti and Steli [24] and Penna et al. [25]. The proposed model shares 
with these models the two principal hypotheses, i.e., plane sections remaining plane and a constitutive rela-
tionship of the masonry with zero tensile strength and a linear behaviour in compression. The model com-
prises the following new features [22]:  

(i) The shear and flexural flexibility are coupled by basing both on the compressed part of the wall. Hence, 
the shear stiffness reduces with increasing lateral load. The nonlinear elastic response is estimated based on a 
Timoshenko beam with variable cross-section along its length. Comparison with displacement components 
determined from the experimental tests described in Section 1.2.1 showed that the model is capable of pre-
dicting not only the shape of the global force-displacement response but also the contributions of shear and 
flexural deformations to the total displacement and the compressive strains at the wall toe.  

(ii) New limit state criteria are proposed that allow estimating the displacement capacity of masonry walls 
failing in flexure. They characterise the onset of splitting and crushing at the wall toe. The limit states are 
described by means of stress limits at the base joint and the mortar joint above the base. At the height of the 
base joint, the mortar is confined by the foundation and cannot expand, increasing therefore the strength of 
the masonry. At the second joint this confinement effect is assumed to have vanished and the compression 
strength is reduced to that obtained from standard compression tests on masonry wallettes. The second fail-
ure criterion leads to a size effect with regard to the deformation capacity, i.e., the larger the test unit the 
smaller its drift capacity. This effect was also observed from the analysis of a database of URM walls (Sec-
tion 1.2.2). The inelastic displacement component due to crushing of the base is accounted for by means of a 
plastic hinge approach similar to the one by Benedetti and Steli [24].  

 

 
Figure 1.9: Force-displacement response of an URM wall assuming a material with zero tensile strength and 
linear-elastic behaviour in compression [22]. 
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1.3 Summary of the PhD project by Alessandro Paparo 
Although structures with RC and URM walls are rather common in Switzerland and other counties of 
moderate seismicity, their seismic behaviour is not well understood and often oversimplifying design 
assumptions such as neglecting the contribution of the URM walls are applied. The PhD thesis by 
Alessandro Paparo [26] contributed to the understanding of the seismic behaviour and the design of modern 
3-5 storey structures with RC and URM walls and RC slabs through performing the following research tasks:  

- Performance of quasi-static cyclic tests on subassemblies of such mixed structures; 
- Validation of numerical models for these structures and the analyses of case studies which 

highlighted the parameters that control the seismic performance; 
- Develoment of a displacement-based design approach for mixed RC-URM wall structures, which 

combines the established direct displacement-based design procedure [6] with novel components 
derived from shear-flexure cantilever models and continuous beam element models to account for 
the particularities of the mixed structural system and the coupling by the RC slabs. 

1.3.1 Quasi-static cyclic tests on structures with an RC and an URM wall 
To understand the interaction of URM and RC walls when subjected to seismic loading, large-scale  
experimental tests on two wall systems were conducted, which consisted each of a URM wall and a RC wall 
that were coupled by two RC beams [27]. A test stand was conceived that allowed measuring the reaction 
forces at the base of the URM walls (Figure 1.10b)—a true challenge considering the size of the forces and 
moments. The models, which were developed in the following, could therefore not only be validated with 
regard to the global response but also with regard to the force distribution between the walls and the 
evolution of this distribution with increasing displacement demand. 

The RC walls of the test units have been designed to reach medium ductility levels (“DCM” class in 
Eurocode 8 [28]). With this design, the displacement capacity of the mixed structure was always controlled 
by the URM walls. The test units behaved differently for the two loading directions: For loading in the 
negative direction (towards left in Figure 1.10a), the axial load increased in the URM walls and therefore its 
deformation capacity reduced (see also Section 1.2.2). The displacement capacity in the negative loading 
direction was therefore always considerably smaller than for the positive loading direction. The variation in 
axial force results from the shear forces that are transferred by the RC beams (in Figure 1.10a these are cov-
ered by the horizontal steel beams). The tests showed further that the softening of the URM walls was 
somewhat compensated by the slender RC walls, which remained elastic over a large range of drifts. The 
most important result relates to the damage distribution within the structural system: Unlike in buildings with 
URM walls only, in which the damage in the walls tends to concentrate in the lowest storey, the inelastic 
deformations in mixed buildings tend to distribute over the height of the structure (Figure 1.11). This leads 
for the same interstorey drift capacity to an increase in global displacement capacity, which is beneficial for 
the seismic safety of such structures. The design approach presented in Section 1.3.3 builds on this finding.  

 

 

Figure 1.10: Static tests on mixed structural system: Test setup for quasi-static cyclic tests (a) and hysteresis 
curves for URM wall, RC wall and entire system (b) [27]. 



 

 

16 

 

 
Figure 1.11: Deformation pattern and inter-storey drift profile due to lateral forces of a single URM wall 
with dominant shear behaviour (a), a single RC wall with dominant flexure behaviour (b) and a mixed RC-
URM structure (c) [29]. 
 

1.3.2 Validation of numerical models for structures with RC and URM walls 
Two numerical models of different complexity were used to analyse the experimental results presented in the 
previous chapter. The first model is a shell element model, which is analysed using the software ATENA 
[30]. In this model, the RC members are modelled by the nonlinear constitutive model SBETA, which is 
implemented in ATENA and the URM walls are modelled using a simplified micro-model, in which the 
bricks are modelled by elastic elements and the joints by interface elements of zero thickness. The interface 
elements were assigned a Mohr-Coulomb law. The material parameters of concrete, reinforcement and 
masonry are derived from material test results, which are summarised in [27].  

The second model is an equivalent frame model, which was analysed using the program TREMURI [10]. In 
this model, the masonry elements were represented by the macro-element by Penna et al. [25] and the RC 
members by Timoshenko beams with plastic hinges [10] to which bilinear moment-rotation relationships 
were assigned. Based on the comparison to the experimental results and the results of the more advanced 
shell element model, recommendations for the computation of the macro-model parameters from material 
properties, the choice of the effective stiffness of the RC members and the effective length of the beam 
elements were formulated [29]. 

 

 

 
Figure 1.12: Reference URM structure and case study where one RC wall is added to the URM structure. 
Force-displacement relations of reference URM structure and case study. The ultimate displacement 
corresponds to the displacement for which the first wall reaches its drift capacity [26]. 
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Both models were able to reproduce the experimental results rather well. The equivalent frame model was 
then used to analyse several case studies. An example of such a case study is illustrated in Figure 1.12. It 
shows that adding one RC wall to the reference URM building does not only increase the force capacity of 
the structure but also the displacement capacity. This results from the coupling of a shear dominant system 
(URM walls) to a flexure dominant system (RC wall), which was illustrated in Figure 1.11.  

 

1.3.3 Displacement-based design approach for structures with RC and URM walls 
To obtain the increase in displacement capacity that results from the coupling of a shear dominant system to 
a flexural dominant system, the stiffness and strengths of the two systems have to respect certain ratios. 
Based on a shear-flexure cantilever model, which has been developed in the past to analyse dual frame-wall 
systems, rules were developed to compute the required stiffness and strength ratio of the two systems which 
allowed to obtain an approximately linear displacement profile over the height [31]. To simplify the matter, 
it was assumed that the flexural flexibility of the URM walls and the shear flexibility of the RC walls can be 
neglected. The boundary conditions required to solve the differential equation describing the shear-flexure 
cantilever model were adapted to represent a RC wall that forms a plastic hinge at the base (Figure 1.13). In 
addition, a continuous beam element model was developed for estimating the moment transferred by the 
slabs and the equivalent viscous damping of URM walls failing in shear evaluated. These models were used 
to assess the seismic performance of buildings with URM and RC walls in the framework of the Direct 
Displacement Based Design approach, which was developed by Priestley, Calvi and Kowalsky [6]. The 
usage of these models in conjunction with force-based design is currently evaluated.  

 

 

Figure 1.13: Mechanical model: identification of shear (URM) and flexural (RC) walls (a); definition of the 
reference system and of the internal forces (b) 

 

1.4 Summary of the CoMa-WallS Project 
Within the framework of a European FP7 research project, which was led by the EESD laboratory, a four-
storey building with reinforced concrete and unreinforced masonry walls was tested on the shake table at the 
TREES laboratory of the EUCENTRE in Pavia (Italy, Figure 1.14). The building was subjected to uni-
directional shaking and was conducted at half-scale. The main objective of the test was to gain new insights 
into the dynamic, non-linear in-plane behaviour of such mixed structures and to collect data for the 
validation of numerical models. In addition, the boundary conditions of the out-of-plane response of URM 
walls was investigated. To achieve this, a test unit with six in-plane loaded walls and two out-of-plane 
loaded walls was designed. The out-of-plane loaded walls were URM walls; of the six in-plane loaded walls 
four were URM and two RC walls. The RC walls were grouped at one end of the structure in order to 
investigate the effect on the two in-plane loading directions (positive vs negative loading direction) and on 
the boundary conditions of the adjacent out-of-plane loaded URM walls.  
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Figure 1.14: Dynamic test on building with RC and URM walls: Drawings of two North and West face of the 
buildings (a, b) and photo of the building before testing (c).  

 

The test unit was subjected to nine runs with increasing intensity. During the last test, the building nearly 
collapsed (Figure 1.15). Collapse was prevented by the RC walls and the out-of-plane URM walls; the first 
two storeys of the in-plane loaded URM walls had lost their horizontal and axial load bearing capacity 
(Figure 1.16). As had been expected based on the results of the quasi-static tests on mixed systems (Section 
1.3.1), the building failed for loading in the negative direction, i.e., when for the direction for which the axial 
force in the URM walls had increased.  

During the last test, one of the out-of-plane loaded URM walls touched the support structure, which had been 
put in place to avoid that the wall fell onto the shake table, and two other showed significant out-of-plane 
deformations. More information on the performance of the out-of-plane loaded URM walls, observations on 
the boundary conditions of these walls in buildings with stiff RC slabs and the validation of a numerical 
model are presented in Chapter 3. A description of the planning of the test, the observations during the test, 
the comparison to the predicted response and the structure of the raw and post-processed data, which is 
publically available, are available [13]. Videos of the test as well as links to the data and the corresponding 
papers can be accessed through the following webpage: http://eesd.epfl.ch/data_sets.  

 

 

Figure 1.15: Dynamic test on building with RC and URM walls: Crack pattern after the last test.  
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Figure 1.16: Dynamic test on building with RC and URM walls: Crack pattern of the in-plane loaded URM 
walls of the two lower storeys after the last test.  
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2 DISPLACEMENT-BASED ASSESSMENT OF URM BUILDINGS WITH RC 
SLABS 

Due to lack of time, the seismic assessment of unreinforced masonry (URM) buildings is often a task that 
needs to be performed without sophisticated numerical models. If sufficient resources are available, which 
allow that advanced numerical simulations are performed, it is desirable to check the results by means of 
simple spreadsheet calculations. In both cases, simple calculations serve only their purpose if they are 
sufficiently accurate to permit conclusions on the expected seismic performance of the building and therefore 
also on the validity of the advanced numerical simulations. The objective of this chapter is to analyse the 
seismic performance of a case study building with URM walls and reinforced concrete (RC) slabs by 
approaches of different complexity, to compare the results obtained and to discuss the origin of the 
discrepancies.  

In the analysed example, the URM walls are constructed with hollow clay bricks and normal cement mortar 
and the RC slabs are 0.2 m thick. The RC slabs have several important effects on the seismic response of the 
URM building: (i) The RC slabs ensure that the shear forces can redistribute between the walls and that the 
walls in one plane are subjected to the same displacement demand. (ii) Since the free span of the slab 
between walls is often relatively small, the bending moments that are transferred by the slabs are not 
negligible. These bending moments and the resulting shear forces introduce a coupling moment into the 
walls and vary the axial force in the walls. This action is in the following referred to as “coupling effect by 
the slabs”. (iii) The RC slabs define also the boundary conditions of the URM walls for out-of-plane failure. 
This is discussed in detail in Chapter 3. 

The example building is analysed by three different models. The first model is a macro-element model which 
is analysed using the software Tremuri by Lagomarsino et al. [10]. Nonlinear static and dynamic analyses are 
performed; the latter serve as benchmark for all other types of models. The second model uses the same 
software but the masonry walls are modelled by bilinear rather than macro-elements; this element is also 
available in the professional version of the software, i.e., the program 3muri [14]. The final model is the 
approach presented in SIA D0237 by Lang et al. [7]. This approach does not involve finite element 
calculations but it is based on simple mechanical models that can be carried out with a spreadsheet. The 
models are compared in terms of the underlying assumptions with regard to the stiffness, force and 
displacement capacity of the URM wall elements. The analysis results are compared in terms of the 
predicted maximum PGA that the building can sustain.  

The chapter concludes with recommendations for analysing URM buildings by means of simple methods 
that include spreadsheet or elastic frame models.  

 

2.1 Case study 
The case study is a four-storey residential building, which has been introduced as example by Lestuzzi and 
Badoux [29]. It is regular over the height and symmetric in plan. Figure 2.1 and Figure 2.2 show a plan view 
and 3D view of the building respectively. The storey height is 2.5 m, the storey mass of storey 1-3 (including 
mass of walls, slabs and permanent loads) is 240 t and the storey mass of storey 4 222 t. The expected 
material properties are summarised in Table 2.1. The building is assessed for a peak ground acceleration of 
1.0 m/s2 and spectrum Type I of EC 8 [12] for soil class C. No safety factors are applied—neither on the 
material properties nor on the force or displacement capacities.  
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Table 2.1: Example building: Expected material properties 

Unreinforced Clay Brick Masonry  
Compression strength fm= 7.0 MPa 
E-modulus Em= 7.0 GPa 
G-modulus Gm= 2.8 GPa 
Cohesion of joints fmvo= 0.25 MPa 
Friction coefficient of joints = 0.4 
Reinforced concrete 
E-modulus of concrete C30/37 Ec= 32 GPa 
E-modulus of reinforcing steel B500B Es= 200 GPa 

 

 

 

Figure 2.1 : Example building: Plan view, all dimensions in m. Thickness of all walls: 0.15 m (adapted from 
[32]) 

 

Figure 2.2 : Example building: 3D view from 3muri and corresponding stick model with four masses [33].  
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2.2 General modelling assumptions 

2.2.1 Stiffness, strength and drift capacity of URM walls 
The effective stiffness of URM walls is computed from the macro-element model that accounts for the effect 
of cracking on the stiffness reduction (see Section 2.3.1). The strength of the URM walls are computed based 
on Eurocode 8, Part 3 [19]. The flexural strength is computed assuming a stress block with =0.85fm: Vୖ,୤ = N ∙ l୵2 ∙ ℎ଴ ൬1 − N0.85 ∙ f୫ ∙ t୵ ∙ l୵൰ (2.7)

where N is the axial force, lw the wall length, tw the wall width, h0 the shear span, fm the masonry 
compression strength. The axial force is positive, if the wall is in compression. Note that in Eurocode 8, Part 
3 [19] the factor 1/0.85=1.17 is written as 1.15. The formulation is here changed to 1/0.85 to make it fully 
compatible with the formulae implemented in the bilinear element in Tremuri.  

The shear strength is computed using the Mohr-Coulomb criterion: Vୖ,ୱ = f୴୫଴ ∙ t୵ ∙ lୡ,ୗ + 0.4 ∙ N ≤ 0.065 f୫ ∙ t୵ ∙ lୡ,ୗ (2.8)
Where fcm0 is the shear strength at zero axial stress (cohesion) and lc,S is the compression zone length. When 
the wall is failing in shear, the compression zone length can be computed assuming a material that is linear 
elastic in compression and has zero tensile strength: lୡ = 3 ∙ ൬l୵2 − e୳൰ = 3 ∙ ቆl୵2 − |M୳|N ቇ (2.9)

where eu is the eccentricity of the axial force at the base of the wall. 

Vୖ,ୱ = ݉݅݊ ቐf୫୴଴ ⋅ t୵ ∙ 3 ∙ ቆl୵2 − หVୖ,ୱห ∙ h଴N ቇ + 0.4 ∙ N0.065 ⋅ ௠݂ ⋅ ݈௖ ⋅ ௪ݐ ቑ  (2.10)

Solving for the shear resistance, one obtains: 

Vୖ,ୗ = ݉݅݊ ۔ۖەۖ
N2ۓ ∙ ቈ(3 ∙ f୴୫଴ ∙ t୵ ∙ l୵) + 0.8 ∙ N(3 ∙ f୴୫଴ ∙ t୵ ∙ h଴) + N ቉0.0975 ∙ ௠݂ ∙ ௪ݐ ∙ ݈௪1 + 0.195 ⋅ ௠݂ ∙ ௪ݐ ∙ ℎ଴/ܰ ۙۘۖ

ۖۗ
 (2.11)

The smaller of the two values determines the capacity and the failure mode of the URM wall.  

The drift capacity of walls failing in shear or flexure was assumed as 0.4%. A differentiation of the drift 
capacity with failure mode [19] or axial stress [7] was not included as this would complicate the comparison 
of the pushover curves obtained from different methods. Assigning the same drift capacity to all walls allows 
to focus on reasons for discrepancies which might not become obvious if walls are assigned drift capacities 
depending on failure mode or axial stress ratio. The discrepancies that are obtained in the following between 
the different methods can therefore be considered a lower bound estimate of the discrepancies.   

 

2.2.2 Stiffness, strength and rotation capacity of RC slabs 
The RC slabs will be modelled by means of equivalent beams. It is assumed that these beams remain elastic 
and that the effective stiffness of these beams corresponds to 50% of their gross sectional stiffness [34]. The 
effective width of these beams was assumed as six times the wall thickness for beams spanning between 
interior walls and 3.5 times the wall thickness for beams spanning between exterior walls [34]. The span of 
the beams was taken as the free span plus the slab thickness ts on either side of the beam [6], [29].  

The concrete and steel properties of the RC slab are those of C30/37 and B500B. The gross-sectional 
stiffness of the concrete beams is reduced to half to account for cracking of the slab. It is assumed that the 
slab remains elastic and does not reach its deformation capacity.  
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2.3 Benchmark model: Tremuri model 

2.3.1 Description of the benchmark model 
As benchmark, the building is modelled using the software Tremuri by Lagomarsino et al. [10]. The version 
2.0 from 2012 has been used for all analyses (Tremuri Ricerca 2.0, 2012). The URM walls are modelled by 
means of the macro-element by Penna et al. [25] that is implemented in the program. The macro-element 
accounts for elastic flexural and shear deformations and axial elongation due to rocking by means of 
analytically derived relationships and uses phenomenological relationships to describe the pre-peak 
softening, the post-peak shear strength degradation and the hysteretic response.  

The in-plane stiffness is modelled by membrane elements [10] and the out-of-plane stiffness by elastic beam 
elements that are assigned the properties described in Section 2.2.2. The model is shown in Figure 2.2. When 
setting up a Tremuri model where the URM walls are modelled with macro-elements, the following points 
need to be given some considerations: 

 

Stiffness of the macro-element in the elastic range: 

The macro-element model is based on the idea of separating the wall into a central part and two interfaces at 
the bottom and top of the wall. Shear deformations are allocated to the central part of the wall and the 
flexural deformations are lumped at the interfaces. The macro-element formulation assumes a constant 
curvature from the base to midheight of the wall and a constant curvature from midheight to the top. The 
curvatures are computed for the interfaces at the base and the top. As a result, the flexural stiffness of the 
macro-element is different to that of an elastic Timoshenko beam. For a wall of height h and a zero moment 
height h0 (Figure 2.3a), the top displacement uf and the top rotation f due to flexure and the top displacement 
due to shear deformations us are the following: 

Timoshenko beam element: u୤ = Vhଷ3ܫܧ + ܸ(ℎ଴ − ℎ)ℎଶ2ܫܧ  (2.12)θ୤ = Vh(2h଴ − ℎ)2ܫܧ  (2.13)uୱ = Vh(2.14) ݏܣܩ

Macro-element by [25]:  u୤ = ܸℎ଴ℎଶ2ܫܧ  (2.15)θ୤ = Vh(2h଴ − ℎ)2ܫܧ  (2.16)uୱ = Vh(2.17) ݏܣܩ

 

where As is taken equal to the gross area.  

The macro-element yields the same top rotation but a different top displacement than the Timoshenko beam. 
The flexural top displacement of the Macro element is for h0/h>0.5 larger than the flexural top displacement 
of the Timoshenko beam element. The ratio of the flexural stiffnesses of the macro-element to the 
Timoshenko beam varies with h0/h (Figure 2.3b). Since the difference in top displacement results from the 
simplifying assumption of the macro-element that the curvatures are constant over half the wall height, the 
E-modulus of the macro-element model should be adapted to correct for the resulting error in flexural 
stiffness. For the case study analysed here, the following approach was adopted: 

 The uncracked stiffness of the building was determined by means of an elastic model where all 
elements were modelled by Timoshenko beam elements. The E-modulus and G-modulus of the 
masonry was 7.0 GPa and 2.8 GPa (Table 2.1). 

 The E- and G-moduli of the masonry in the model with macro-elements was then tuned to reach for 
a horizontal load with triangular distribution over the height of the building the same uncracked 
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stiffness than the model with Timoshenko beam elements. To do this purpose, the E- modulus had to 
be multiplied with a correction factor R=1.075; the G-Modulus was multiplied with R and the factor 
5/6 (to account for the fact that in Tremuri As=Agross), i.e., with 0.90. Hence, the E- and G-modulus 
specified in Tremuri were 7.53 GPa and 2.51 GPa respectively. 

As an alternative to the model with Timoshenko beam elements, the correction factor can be estimated using 
an iterative approach by analysing the macro-element model, identifying a representative shear span ratio 
and applying the correction factor from Figure 2.3b. 

 

 

 

Figure 2.3 : Degrees of freedom of a URM wall (a). Ratio of flexural stiffnesses of macro-element to 
Timoshenko beam (b).  

 

Shear and flexural strength of the macro element: 

The flexural strength of the macro-element [25] is determined via the constitutive model assigned to the 
interfaces. To include the effects of toe-crushing phenomena, the interfaces are assigned a bilinear elastic-
perfectly plastic constitutive model, with zero tensile strength, finite compressive strength, and stiffness 
degradation in the cyclic behaviour. This implies that the ultimate flexural strength of the macro-element 
tends to approach the limit value (where N is considered positive in compression): Vୖ,୤ = N ∙ l୵2 ∙ ℎ଴ ൬1 − Nf୫ ∙ t୵ ∙ l୵൰ (2.18)

Because the Eurocode 8, Part 3 considers a stress block with =0.85fm to compute the ultimate flexural 
strength, in this case study, to make the two formulations consistent, a factor 0.85 was applied to the 
compressive strength of the macro-element. 

The shear strength of the macro-element is based on a shear constitutive model which applies a Mohr-
Coulomb type criterion to the gross section. The constitutive model considers elastic deformations up to the 
static frictional strength of the element, followed by sliding deformations that take place if the frictional 
strength is exceeded; the additional strength is provided by the cohesion of the material. As the maximum 
cohesive strength is evaluated referring to the entire cross section, the shear strength of the macro-element is 
given by: Vୖ,ୱ = cA୥୰୭ୱୱ + μN (2.19)

where μ is the friction coefficient and c represents the strength due to material cohesion. Such formulation of 
the shear behaviour of macro-element does not allow for a perfect agreement between this model and the 
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expressions given in the Eurocode 8, that account for the cohesion only over the length of the compressed 
zone.   

Drift capacity:  

The macro-element requires as input an ultimate drift capacity for flexural and shear failure [25]. Note, 
however, that the drift definitions for the macro-element differ from the commonly used drift definition; 
therefore, different drift limits should be applied. A comparison of the different drift definitions and their 
impact on the limit drifts is documented in [23]. The macro-element uses different drift definition for 
flexural and shear failure: δ୤୪ = ቚu୨ − u୧h + φୣቚ ≤ δ୤୪,୪୧୫ (2.20)δୱ୦ = ฬφ୨ + φ୧2 − φୣฬ ≤ δୱ୦,୪୧୫ (2.21)1

where u୧ and u୨ are the horizontal displacements of the two nodes of the macroelement, φ୧ and φ୨ are the 
rotations of the two nodes of the macroelement, and φୣ is one of the internal degrees of freedom, 
representing the absolute rotation of the central part. 

If this drift capacity is reached, the resistance of the element with regard to the corresponding failure mode is 
set to zero. The following points need to be kept in mind: 

- The axial load bearing capacity is maintained. For shear failure of modern URM walls, horizontal 
load failure is, however, often immediately followed by axial load failure [15]. 

- If an element fails in shear, it maintains its flexural load bearing capacity and vice versa. 
Experimental tests have, however, shown that the occurrence of one failure mode influences the 
resistance associated with the other failure mode.  

- Mixed failure modes that are very common in reality cannot occur.  
- The drift definition of URM walls failing in shear is different to the drift definition implemented in 

common codes, such as EC8-3 [19]. The drift limits proposed in EC8-3 can therefore not be applied 
to the drift definition implemented in the macro-element as it was shown that in particular for 
h0/hs>1, the difference between the two drift definitions is considerable.  

For this reason, the failure of the building was determined after the completion of the analysis as the 
minimum top displacement for which a maximum first storey drift of 0.4% was reached.  

 

2.3.2 Modal analysis 
The fundamental periods of the structure in x- and y-direction are 0.29 and 0.30 s respectively. These 
fundamental periods were determined on the basis of the gross sectional stiffness. The ratio of effective to 
gross sectional stiffness will be computed in Section 2.3.3. The first and second mode shapes are shown in 
Figure 2.4. 

 

Table 2.2 : Example building: Results of modal analysis. 

Mode Frequency 
[Hz] 

Period 
[s] 

Part. mass x 
[%] 

Part. mass y 
[%] 

1 3.38 0.296 0.0 73.2 
2 3.42 0.293 70.3 0.0 
4 10.99 0.091 0.0 19.3 
6 13.31 0.075 20.1 0.0 

                                                      

1 Note that in [25] the drift definition for shear failure contains a +φୣ instead of a –φୣ. However, we believe that it 
should be a minus sign and it seems also to be implemented in Tremuri with –φୣ. 
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Figure 2.4 : Example building: Mode shapes of the first and second mode in the x-direction (a) and the y-
direction (b).  

 

2.3.3 Pushover analysis in the y-direction 
As a first step, a pushover analysis with a triangular force pattern is carried out. The considered loading 
direction is the negative y-direction. The analysis results are shown in Figure 2.5 to Figure 2.7. The structure 
is symmetric for loading in the y-direction, i.e., all walls will be subjected to the same displacements. In 
total, there are seven walls. The two facades are identical, which consist of three walls each. For this reason, 
the pushover curves are only plotted once (Wall 8-10). The total resistance in y-direction corresponds 
therefore to two times the resistance of the Walls 8-10 and once the resistance of the central wall 25. The 
pushover analysis is stopped when an interstorey drift of 0.4% is reached in the first storey. Due to 
significant bending deformation, a drift of 0.4% is reached first in one of the top storeys; this point is 
indicated in all figures with a cross. A significant portion of this interstorey drift results, however, from rigid 
body deformations. The SIA D0237 method, to which the macro-element results will be compared in Section 
2.4, can only account for first storey failures. Limiting the application of the failure criterion to the first 
storey only, eliminates therefore one possible reason for differences between the two models.    

Figure 2.6 shows that the axial force and shear span vary with the displacement demand. This applies in 
particular to the shear span in the elastic range and to a lesser extent to the inelastic range. The variation of 
the shear span will be of consequence for the spreadsheet calculation method in Section 2.4. When adding up 
the axial force of all walls in y-direction (Figure 2.7a), one notices that it does not remain constant with 
increasing displacement demand: The slabs redistribute part of the axial force to walls in the x-direction. 
Figure 2.7b shows the pushover curve for loading in the negative y-direction and its bilinear approximation. 
The latter will be used in the following section for determining the seismic demand for which the building 
reaches a first storey drift of 0.4%. The bilinear approximation was obtained as follows [35]: 

- The effective stiffness was defined as the secant stiffness which passes through the point that 
corresponds to 70% of the peak strength. 

- The ultimate strength was computed by imposing that the areas underneath the actual and the 
bilinear curve are equal.  

- The ultimate displacement of the bilinear approximation corresponds to the ultimate displacement of 
the actual capacity curve. 
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For loading in the negative y-direction the effective stiffness corresponds to 67% of the gross sectional 
stiffness.  For loading in the positive y-direction, the effective stiffness is only 42% of the gross sectional 
stiffness (Section 2.3.4).   

 

Figure 2.5 : TREMURI, pushover analysis in the negative y-direction: Pushover curves of individual walls 
(a) and pushover curve of system for loading. The ultimate displacement corresponds to 0.4% drift of the 
first storey. The cross marks the first attainment of 0.4% in one of the upper stories.  

 

 

Figure 2.6 : TREMURI, pushover analysis in the negative y-direction: Variation of axial force (a) and height 
of zero moment (b) for the walls 8, 9, 10, 25.  
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Figure 2.7 : TREMURI, pushover analysis in the negative y-direction: Variation of total axial force carried 
by the walls 8, 9, 10, 25 (a). Bilinearisation of the global pushover (b). 

 

2.3.4 Capacity spectrum method 
The structure is evaluated for a EC8-Type 2 spectrum of soil class C [12]. The corner periods of this 
spectrum are TB=0.2 s, TC=0.6 s, TD=2.0 s and the soil factor is S=1.15. EC8 proposes as nonlinear static 
assessment method a capacity spectrum method [36]. The evaluation of seismic performance of the MDOF 
system according to this method comprises two steps: First, the pushover curve of the MDOF system is 
transformed into the pushover curve of an equivalent SDOF system, which yields the displacement capacity 
of this equivalent SDOF system. Second, the displacement demand on the equivalent SDOF system is 
determined and compared to the displacement capacity.  

There are different ways of computing the mass and force of the equivalent SDOF system, which eventually 
all yield the same result. The one included here corresponds to the most physical representation: The period 
of the equivalent SDOF system is equal to the fundamental period of the MDOF, the mass of the equivalent 
SDOF corresponds to the effective modal mass of the first mode of the MDOF and the base shears of both 
systems are equal. The displacement of the SDOF is the top displacement of the MDOF system divided by 
the participation factor : mୗୈ୓୊ = (∑ ݉௜߮௜)ଶ∑ ݉௜߮௜ଶ  (2.22)

Γ = ∑ ݉௜߮௜∑ ݉௜߮௜ଶ (2.23)

∆ୗୈ୓୊= ∆௧௢௣Γ  (2.24)ୗܸୈ୓୊ = ௕ܸ௔௦௘ (2.25)݇ୗୈ୓୊ = ௕ܸ௔௦௘Δ୷,୲୭୮/ Γ (2.26)

ୗܶୈ୓୊ = ඨ݉ௌ஽ைி݇ௌ஽ைிߨ2 = ଵܶ (2.27)

where i is the vector of the first mode at storey i normalised to unity at the top floor; mi is the mass of storey 
i. In this method, the target displacement demand is evaluated based on the spectral displacement at the 
effective first period T1 of the structure. For short period structures (T<TC) it is increased to account for  
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T1<TC:  q୳ = max(ܵ௘( ଵܶ) ∙ ݉ௌ஽ைி; 1) (2.28)S୳( ଵܶ) = ܵ௘( ଵܶ) ∙ ൬ ଵܶ2ߨ൰ଶ
 (2.29)∆∗= ܵ௨( ଵܶ)ݍ௨ ൬1 + ௨ݍ) − 1) ஼ܶܶଵ൰ > ܵ௨( ଵܶ) (2.30)

T1>TC:  ∆∗= ܵ௨( ଵܶ) (2.31)
 

The displacement check is satisfied if the displacement capacity of the equivalent SDOF is larger than the 
displacement demand *:  ∆୳,ୗୈ୓୊≥ ∆∗ (2.32)
In the following, different analysis methods are compared. These comprise next to the capacity spectrum 
method also dynamic analyses. To compare the different analysis methods, we determine for each analysis 
method that peak ground acceleration (PGA) for which the displacement capacity equals the displacement 
demand. The peak ground acceleration corresponds to the maximum absolute acceleration of the ground, i.e., 
to: PGA = a୥ ∙ ܵ (2.33)
where ag is the peak ground acceleration for rock and S the site amplification factor.  

Figure 2.8 shows for the negative and positive y-direction the maximum PGAs that the structure can sustain 
according to the capacity spectrum method. The PGAs in the two directions differ by 25% (2.71 m/s2 and 
2.16m/s2) as the structure has slightly different force capacities and displacement capacities in the two 
directions.  

 

 

 

Figure 2.8 : TREMURI, capacity spectrum method: PGA that lead for the negative and positive direction to 
the attainment of 0.4% first storey drift. 
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Table 2.3: Tremuri model: Equivalent SDOF system for loading in the negative y-direction 

Storey ݉௜ ߮௜  ݉௜߮௜  ݉௜߮௜ଶ  mୗୈ୓୊ = (∑ ݉௜߮௜)ଶ∑ ݉௜߮௜ଶ = 541ଶ402 =  ݐ 729

Γ = ∑ ݉௜߮௜∑ ݉௜߮௜ଶ = 582432 = 1.35 

݇ୗୈ୓୊ = ௕ܸ௔௦௘Δ୷,୲୭୮/ Γ = 18300.0107 ∙ 1.35 = 2.29 ∙ 10ହ  ݇ܰ݉
 

ୗܶୈ୓୊ = ඨ݉ௌ஽ைி݇ௌ஽ைிߨ2 = ඨߨ2 7292.29 ∙ 10ହ =   ݏ0.35

4 222 1.00 222 222 

3 240 0.73 175 128 

2 240 0.43 104 45 

1 240 0.17 40 7 

Sum 942  541 402 

 

2.3.5 Dynamic analyses 
As benchmark analyses, nonlinear time history analyses with twelve spectrum compatible records are carried 
out. The records are twelve non-stationary records for soil class C [37]. Figure 2.9 shows the acceleration 
and displacement response spectra for a PGA of 1.15 m/s2. The structure was analysed using an initial 
stiffness and mass proportional Rayleigh damping model. The damping coefficient was set to 5% of damping 
in the first and second mode.  

For each record, the accelerations were scaled such that the maximum absolute value of the first storey drift 
corresponded to 0.4%±0.02%. The resulting PGA-values for each record are summarised in Table 2.4. The 
third column labelled with “PGA” corresponds to the actual peak acceleration of the record. The fourth 
column labelled with “PGA code spectrum” corresponds to the peak ground acceleration of the code 
spectrum, which fits the spectrum of the record best; it is this PGA value which the discussion will be based 
on. The average PGA-value, for which the structure reaches a peak first storey drift of 0.4%, is 2.18 m/s2. 
The base shear – top displacement hysteresis curves for the 12 records are shown in Figure 2.10.  

 

 

 

Figure 2.9 : Dynamic analyses: Acceleration (a) and displacement (b) spectra for the 12 records used for the 
dynamic analyses and comparison to the design spectra. The spectra are plotted for a PGA of 1.15m/s2.  
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   Table 2.4 : Dynamic analyses: PGA-values for each record that led to a maximum first storey drift of 0.4%.  

Record PGA [m/s2] PGA [m/s2] 
code spectrum 

1 2.22 2.11 
2 2.13 1.98 
3 2.01 1.79 
4 2.47 2.48 
5 2.32 2.27 
6 2.12 2.07 
7 2.12 1.96 
8 2.98 2.69 
9 2.58 2.29 

10 2.11 1.98 
11 2.85 2.64 
12 1.95 1.85 

average 2.32 2.18 
min. 1.95 1.79 
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Figure 2.10 : TREMURI, dynamic analyses: Global-force displacement response and comparison to 
pushover curves.  
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2.3.6 Discussion 
The nonlinear static and dynamic evaluations of the building that were presented in Sections 2.3.4 and 2.3.5 
respectively were both based on the same Tremuri-model (Section 2.3.1). Differences in the predicted 
capacities, which were expressed in terms of the maximum PGA that the structure could sustain, result 
therefore from the analysis method and not the numerical model. The comparison shows, however, that the 
two analysis methods (capacity spectrum method, time history analyses) yield very similar PGA-values: 
according to the capacity spectrum method the maximum PGA is 2.16 m/s2; according to the dynamic 
analyses the structure can sustain a PGA of 2.18 m/s2.  

 

2.4 Computing the pushover curve with spreadsheet calculations 
For engineering practice, nonlinear static or even dynamic analyses might often not be practical and much 
simpler and faster analyses methods are required. One such method was developed by Lang in her thesis [5] 
and has also been included in the technical documentation SIA D0237 [7]. It is an extension of the storey-
mechanism approach, which was introduced by [38] for computing the force capacity, to a method that 
allows computing the entire pushover curve of a building. The SIA D0237 method computes pushover 
curves for each wall and calculates the structure’s pushover curve as sum of all individual wall curves that 
are oriented in one direction. To determine the displacement demand, the capacity spectrum method as 
implemented in EC8 [12] is applied (see Section 2.3.4).  

2.4.1 Assumptions behind the SIA D0237 method 
Computing the pushover curve of the building by means of simple spreadsheet calculations requires some 
simplifying assumptions. The assumptions behind the SIA D0237 method are discussed in the following as 
not all of these are outlined in [7]. 

Effective stiffness: A predefined ratio of the gross sectional stiffness is used as effective stiffness in order to 
account for the effect of cracking. The SIA D0237 method assumes that the stiffness reduces uniformly over 
the wall height.  

Mode shape: No modal analysis is performed but it is assumed that the mode shape is linear over the height 
of the building. This assumption is often very reasonable and appropriate.  

Coupling effect by spandrels and slabs: Spandrels and slabs (in particular RC slabs) transmit shear forces 
and change therefore the height of zero moment and the axial force of the walls, as well as the deformed 
shape at failure. The coupling effect is accounted for in an approximate manner by the following 
assumptions: 

o The height of zero moment h0 of each wall is set to a predefined value and assumed 
independent of the applied lateral displacement. If the building features continuous RC 
slabs, SIA D0237 recommends h0=hs (if the slab features large openings, h0=2hs is 
recommended).  

o The variation in axial force due to the coupling effect is neglected and the resistance of the 
walls computed for the axial force resulting from gravity loads only. 

Note also that this approach of treating the coupling effect does not satisfy the global moment equilibrium: 
For a building with n storeys and constant storey heights and masses, if one assumes, for example, a 
horizontal force distribution with equal forces at each storey level, the height of the resultant force is heff=((n-
1)/2+1) hs and the overturning moment demand therefore OTM=Vbase heff. For a building with four storeys 
this would correspond to 2.5 hs. The overturning resistance of the structural model is, however, OTM=Vbase 
h0=Vbase hs. The difference results from the variation of the axial force variation in the walls due to the 
overturning moment, which is neglected in the SIA D0237 method.  

Reduced height due to spandrels: Spandrels decrease the free wall height, i.e., the height of the wall that will 
be subjected to significant deformations. Neither for the displaced shape at yield nor at ultimate does the SIA 
D0237 method account for the reduced deformable storey height. Hence, in the case of spandrels the 
displacement at yield and ultimate is overestimated while the strength is underestimated. To eliminate the 
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effect of the spandrels when comparing the results of the different methods, the spandrels are also not in-
included in the finite element models although the reference structure featured spandrels [32]. 

Failure mode: The SIA D0237 method considers only the possibility of first storey failures. Failure in higher 
storeys is not evaluated. To eliminate any differences that could result from failures at higher storeys, the 
macro-element model and the bilinear model also consider first storey failure only.  

Deformed shape at failure: With regard to the deformed shape at failure, the SIA D0237 method assumes 
that inelastic deformations occur only in the first storey and that these inelastic deformations result only in a 
translation and not in a rotation at the height of the first storey slab. The latter is only applicable if h0=0.5hs 
and therefore not compatible with the general recommendation in SIA D0237 of h0=hs. 

Computation of the capacity curve of the system: To obtain the capacity curve of the system, the capacity 
curves of all walls are added up. To do so, one plots the force-top displacement curves of each wall and adds 
up the wall resistances as a function of the top displacement. With this approach the displacements of the 
individual walls are not compatible at the storey levels. This results from the difference in deformation 
profiles before and after yield and the fact that the yield displacements of the walls are in general not 
identical.  

2.4.2 Force-displacement curves of individual walls 
In this document the pushover curves of the walls are determined as described in SIA D0237 but applying 
the EC8 strength formulae instead of the stress-field approach of SIA 266 [39]. Using the assumptions with 
regard to axial force and height of zero moment that were outlined above, the strength of each wall can be 
readily determined (see equations in Section 2.2.1).  

For the complete pushover curve of each individual wall, estimates of its yield displacement and 
displacement capacity are required. The yield displacement at the first floor is estimated as: d୷ଵ = Vୖୢ ∙ hୱଷ3 ∙ EIୣ୤୤ + Mଵ ∙ hୱଶ2 ∙ EIୣ୤୤ + 65 ∙ ൬Vୖୢ ∙ hୱGAୣ୤୤ ൰ (2.34)

where VRd is the shear resistance of the wall (min of Eq. (2.7) and (2.11)), M1 is the moment at the top of the 
first storey wall (h=hs), EIeff and GAeff are the effective stiffnesses. The moment at the top of the first storey 
wall is: Mଵ = Vୖୢ(ℎ଴ − ℎ௦) (2.35)
If h0 = hs, M1 and therefore also the second term of Eq. (2.33) is zero. Note that in SIA D0237 the factor 6/5 
was omitted. All attempts of computing the displacements of a squat URM wall based on beam theory must 
necessarily be rather crude. Hence, there is no need to “refine” the expression; the term was merrily included 
as it was also included in the Timoshenko beam model and therefore facilitates the comparison between the 
different approaches.   

The objective of this study is to compare the different methods on the basis of assumptions that are as 
compatible as possible. For this reason, the values of Eeff and Geff were determined from the ratio of the 
initial to the effective stiffness of the macro-element model: Eୣ୤୤ = E୫ ∙ ݇௘௙௙,்௥௘௠௨௥௜݇௜௡௜௧௜௔௟,்௥௘௠௨௥௜ = 7.0 ܽܲܩ ∙ 0.67 = 4.69 (2.36) ܽܲܩ

Gୣ୤୤ = G୫ ∙ ݇௘௙௙,்௥௘௠௨௥௜݇௜௡௜௧௜௔௟,்௥௘௠௨௥௜ = 2.8 ܽܲܩ ∙ 0.67 = 1.88 (2.37) ܽܲܩ

It is assumed that the displacement profile over the height of the building is linear at yield. The top 
displacement is therefore: d୷୬ = n ∙ d୷ଵ (2.38)

where n is the number of storeys of the building.  

To complete the pushover curve, an estimate of the displacement capacity is needed. It is assumed that all 
walls fail in the first storey where the shear force demand on the walls is largest. The ultimate displacement 
at the first storey is computed as: 
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d୳ଵ = δ୳ ∙ hୱ୲ (2.39)

where u is the drift capacity of the wall (Section 2.2.1), which is here assumed as 0.4% for all walls and 
failure modes. The corresponding top displacement is estimated assuming that the inelastic deformations 
concentrate in the first storey only: d୳୬ = d୳ଵ − d୷ଵ + d୷୬ (2.40)

Using this method, the pushover curves of all walls in the y-direction are determined and the corresponding 
values summarised in Figure 2.11a. To eliminate differences between models due to the gravity load case, 
the strength values of the SIA D0237 method were computed using the axial forces resulting from the 
gravity load case of the Tremuri model. Note that—due to the simplifying assumptions behind this method—
the capacity curves for loading in the positive and negative y-direction are identical.  

 

Table 2.5: SIA D0237: Force and displacement capacity of walls in the Y-direction 

Wall N1) 

[kN] 

h0 

[m] 

VRf 

[kN] 

VRs1 

[kN] 

VRs2 

[kN] 

VR 

[kN] 

y1 

[mm]

yn 

[mm] 

u1 

[mm] 

un 

[mm]

1 205 2.50 73 82 75 73 3.6 14.4 10.0 20.8

2 379 2.50 120 152 129 120 5.9 23.7 10.0 27.8

3 574 2.50 502 343 455 343 2.9 11.7 10.0 18.8

7 2297 2.50 1601 1119 1346 1119 7.3 29.4 10.0 32.0

1) Axial force obtained from Tremuri calculations (gravity loads only) 

 

2.4.3 Force-displacement curves of building and evaluation of seismic performance 
The capacity curve of the building is computed as sum of the capacity curves of the walls that contribute to 
the resistance in the y-direction (Figure 2.11). In total, seven walls are aligned in y-direction and the building 
resistance in the y-direction is computed as two times the resistance of Walls 8-10 and once the resistance of 
Wall 25.  

 

 

Figure 2.11 : SIA D0237: Pushover curves of individual walls (a) and pushover curve of system for loading 
in the y-direction (the results are the same for loading in the positive and negative direction). 
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The PGA, for which the structure would just reach its displacement capacity, is computed using the capacity 
spectrum method of EC8 (see Section 2.3.4). The effective period is 0.48 s (Table 2.6) and the PGA for 
which the displacement capacity is reached is 1.06 m/s2 (Figure 2.12). 

 

Table 2.6: SIA D0237: Equivalent SDOF system 

Storey ݉௜ ߮௜  ݉௜߮௜  ݉௜߮௜ଶ  mୗୈ୓୊ = (∑ ݉௜߮௜)ଶ∑ ݉௜߮௜ଶ = 582ଶ432 =  ݐ 784

Γ = ∑ ݉௜߮௜∑ ݉௜߮௜ଶ = 582432 = 1.35 

݇ୗୈ୓୊ = ௕ܸ௔௦௘Δ୷,୲୭୮/ Γ = 15800.0135 ∙ 1.35 = 1.58 ∙ 10ହ  ݇ܰ݉
 

ୗܶୈ୓୊ = ඨ݉ௌ஽ைி݇ௌ஽ைிߨ2 = ඨߨ2 7841.58 ∙ 10ହ =   ݏ0.44

4 222 1.00 222 222 

3 240 0.75 180 135 

2 240 0.50 120 60 

1 240 0.25 60 15 

Sum 942  582 432 

 

 

 

Figure 2.12 : SIA D0237: Performance point of building for loading in the y-direction (the results are the 
same for loading in the positive and negative direction). 

 

2.4.4 Comparison to Tremuri model  
The SIA D0237 method predicts that the capacity of the structure is only about 49% of the capacity of the 
structure predicted by the macro-element (SIA D0237: PGA = 1.06 m/s2, Tremuri: PGA = 2.16m/s2).  This 
difference exists although several causes for possible differences have been eliminated artificially: 

- Spandrels were not considered as the SIA D0237 does not account for the reduced effective height 
(Section 2.4.1). 

- The ratio of effective to initial stiffness was set to be the same for both models.   
- The SIA D0237 calculations were performed on the basis of the axial forces obtained from gravity 

load analysis with the macro-element model.  

The differences must therefore be related to other assumptions on which the two models are based. Figure 
2.13 shows the pushover curve of the building for loading in the negative y-direction. Taking the results 
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obtained with the macro-element model as benchmark, the comparison shows that the SIA D0237 method 
estimates the force capacity reasonably well (~-20%). The displacement capacity and the displacement 
ductility are, however, more strongly underestimated (-55% and 40% respectively). In the following the 
origin of these trends are discussed.  

If one compares the pushover curves of the individual walls one notices that the differences between macro-
element model and SIA D0237 model are larger than on the system level and also the force capacity is no 
longer well estimated (Figure 2.14). The differences result from the assumed shear span (h0=hs), the assumed 
axial forces and the assumed displaced shape at failure. Figure 2.16a shows that for macro-element model 
the shear span of the walls varies between 0.5-2.5 hs while SIA D0237 assumes h0=hs. The figure suggests 
that for the shorter walls the preliminary estimate of 1hs seems appropriate. However, for other locations of 
the wall (inner vs outer), other slab thicknesses, spacings of walls, and in particular other slab configurations 
(RC slabs, timber slabs, precast slabs, …), this finding might no longer hold. Figure 2.15 shows that the axial 
force in some of the walls of the macro-element varies with increasing lateral drift demand.  

The largest influence on the performance of the SIA D0237 method seems to have the assumed displaced 
shape at ultimate displacement: Figure 2.16b highlights that in the SIA D0237 method the displaced shapes 
of the individual walls are not compatible (Section 2.4.1) and can vary rather widely if the system comprises 
walls of different length and / or different shear span. They also show that the assumption that all additional 
deformation beyond the yield point is concentrated in the first storey does not reflect reality. The reasons for 
this are twofold (see also Section 2.4.1): 

- If the shear span is larger than 0.5hs, inelastic deformation of the first storey will induce also a 
rotation at the first storey slab. This rotation causes a rigid body movement of the superior storey 
which is not captured by the SIA D0237 method. 

- If walls that respond mainly in shear are coupled to walls that respond mainly in flexure, the 
deformed shape is often rather close to linear (depending on the relative strength and stiffnesses of 
the walls, [31]).  

 

 

Figure 2.13 : Comparison of SIA D0237 and Tremuri model: Global pushover curves for loading in the 
negative y-direction.  
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Figure 2.14 : Comparison of SIA D0237 and Tremuri model: Pushover curves of individual walls for the 
negative y-direction.  

 

 

Figure 2.15 : Comparison of SIA D0237 and Tremuri model: Variation of axial force in individual walls for 
the pushover analyses in the negative y-direction.  
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Figure 2.16 : Comparison of SIA D0237 and Tremuri model: Height of zero moment of walls in Tremuri 
model (a) and deformed shapes at ultimate displacement (b) for the pushover analyses in the negative y-
direction.  

 

2.5 Equivalent frame model with beam elements: 3muri  
In Tremuri, the macro-element is not the only element type that can be used for modelling URM walls. As a 
second element a Timoshenko beam element with a beam element with plastic hinge is implemented. The 
hysteretic law of these plastic hinges is bilinear. In the professional version of Tremuri, which is called 
3muri [14], only this bilinear element is available for modelling URM walls. For this reason, and to facilitate 
the reference to the two different models, the model of the example structure with beam elements is in the 
following labelled with “3muri” while the macro-element model is labelled with “Tremuri”. The analyses 
are, however, carried out with Tremuri, but since both programs use the same solver the results with the 
beam element model are representative of the results 3muri would yield.  

Important differences between the macro-element and the beam element relate to: 

- The initial stiffness; 
- The shear strength equations that are implemented; 
- The definition of drift that is implemented; 
- The fact that the beam element does not account for the vertical elongation of the wall due to 

rocking. 

Section 2.5.1 outlines the modelling assumptions behind the beam element in 3muri. In Section 2.5.2 the 
capacity of the example structure when modelled with 3muri is assessed through the capacity spectrum 
method and in Section 2.5.3 the origins of the differences in the pushover curves obtained for the example 
structure with Tremuri and 3muri are analysed.  

2.5.1 Nonlinear beam element model in 3muri 
Stiffness of the nonlinear beam element in the elastic range: 

The formulation of the nonlinear beam element applies in the elastic range the Timoshenko beam theory, 
resulting in the following expressions for the displacements (where a factor 5/6 is applied to the gross area to 
obtain Aୱ): u୤ = Vhଷ3EeffI + V(h଴ − h)hଶ2EeffI  (2.41)
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θ୤ = Vh(h଴ − h)2EeffI  (2.42)uୱ = VhGeffAs (2.43)

The E- and G-modulus represent effective properties. To allow for a fair comparison with the Tremuri 
model, these were derived—as for the SIA D0237 method—by multiplying the material values with the ratio 
of effective to initial stiffness that was obtained from the Tremuri analysis for loading in the negative 
direction: Eୣ୤୤ = E୫ ∙ ݇௘௙௙,்௥௘௠௨௥௜݇௜௡௜௧௜௔௟,்௥௘௠௨௥௜ = 7.0 ܽܲܩ ∙ 0.67 = 4.69 (2.44) ܽܲܩ

Gୣ୤୤ = G୫ ∙ ݇௘௙௙,்௥௘௠௨௥௜݇௜௡௜௧௜௔௟,்௥௘௠௨௥௜ = 2.8 ܽܲܩ ∙ 0.67 = 1.88 (2.45) ܽܲܩ

 

Shear and flexural strength of the nonlinear beam element: V୤୪ = Nh଴ ൬L2 − N2 ∙ 0.85 ∙ f୫t൰ 

 

(2.46)Vୖ,ୱ = f୴୫଴ ∙ t୵ ∙ l୵ + 0.4 ∙ N ≤ 0.065 f୫ ∙ t୵ ∙ l୵ (2.47)

Different criteria are available to define the shear strength of the bilinear element: in this case the Mohr-
Coulomb criterion, applied on the gross area, was chosen in order to apply a similar formulation as to the 
macro-element. Other options, not considered in this case, are the Mohr Coulomb criterion applied on the 
compression area, and the Turnšek and Cačovic criterion. 

Drift capacity of the nonlinear beam element:  

The nonlinear beam element in 3muri, similarly to the macro-element in Tremuri, requires the definition of 
two ultimate interstorey drifts that define the failure drifts for shear and flexural failure. The drift definition 
differs, however, between the macro-element and the nonlinear beam element. For the nonlinear beam 
element the failure is determined on the basis of the common drift definition implemented in design codes: δ = ௝ݑ − ௜hݑ  (2.48)

Note, however, that the drift output of the nonlinear beam element is based on a further drift definition, 
which subtracts from the interstorey drift the rigid body rotation: δ = ௝ݑ − ௜hݑ + ߮௝ + ߮௜2  (2.49)

After the drift capacity is reached, the behaviour of the element is the same as the macro-element in Tremuri: 
the axial load bearing capacity is maintained, while the capacity to carry lateral loads is set to zero (no 
distinction between shear and flexural load bearing capacity is made). 

To adopt the same failure criterion as for the Tremuri analysis and the SIA D0237 method, the failure of the 
building was assumed when the first storey reaches 0.4% drift. 

 

2.5.2 Capacity spectrum method 
The 3muri model yields fundamental periods of vibrations of 0.37 s and 0.36 s in the y- and x-direction 
respectively. The period Ty=0.36 s is very similar to the one obtained for the macro-element model on the 
basis of the effective stiffness, which is Ty=0.35 s (Section 2.3.4, in fact the differences result from rounding 
errors), since the E- and G-modulus of the 3muri model had been adapted to match the effective stiffness of 
the Tremuri model.  

Using the pushover curve obtained with 3muri and applying the capacity spectrum method as outlined in 
Section 2.3.4, one obtains that the structure can sustain for loading in the negative y-direction a maximum 
PGA of 1.94 m/s2 (Figure 2.17). For Tremuri, one had obtained for loading in the negative y-direction 2.71 
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m/s2 (Section 2.3.4) and with the SIA D0237 method 1.06 m/s2 (Section 2.4.3). 3muri leads therefore for the 
example structure to a capacity that is 25% lower than that of Tremuri and 100% higher than that of the SIA 
D0237 calculations. As outlined in Section 2.4.4, these differences are not representative but apply only to 
the example structure and the analysed direction of loading.  

 

 

Figure 2.17 : 3muri:  Pushover analysis in the negative y-direction and bilinear approximation (a) and 
capacity spectrum method which yields the PGA that leads to the attainment of 0.4% first storey drift. 

 

2.5.3 Comparison to Tremuri model  
In this section the results of the pushover analysis of the 3muri model are compared to the corresponding 
results obtained with the Tremuri model (Section 2.3.3). The comparison is carried out for loading in the 
negative y-direction.  

Figure 2.18a shows the comparison of the pushover curves and their bilinear approximations. For the macro-
element model, the elastic branch of the bilinear approximation corresponds to the secant stiffness at 70% 
peak strength. For the nonlinear beam element model, the elastic branch of the bilinear approximation 
corresponds to the initial stiffness of the nonlinear beam element model. Unlike the macro-element model, 
the nonlinear beam element model cannot capture the reduction in stiffness due to cracking. Any stiffness 
reduction in the beam element model results therefore from yielding of elements. For this reason, a different 
bilinear approximation was chosen. Since the effective stiffness values of the bilinear model were derived 
from the effective stiffness of the macro-element (see previous section), the two bilinear approximations 
have the same stiffness.  

Figure 2.18b shows that the deformed shapes at 0.4% first storey drift are not identical, but the differences 
are significantly smaller than when compared to the SIA D0237 method. For all other quantities, i.e., shear 
forces and axial forces carried by the individual walls and the shear span, the two models yield somewhat 
different but in general comparable values (Figure 2.19 to Figure 2.21).  
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Figure 2.18 : Comparison of 3muri and Tremuri model: Pushover curves (a) and deformed shapes at ultimate 
displacement (b) for the pushover analyses in the negative y-direction.  

 

 

 

Figure 2.19 : Comparison of 3muri and Tremuri model: Pushover curves of individual walls for the negative 
y-direction.  
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Figure 2.20 : Comparison of 3muri and Tremuri model: Variation of axial force in individual walls for the 
pushover analyses in the negative y-direction.  

 

 

 

Figure 2.21 : Comparison of 3muri and Tremuri model: Variation of shear span in individual walls for the 
pushover analyses in the negative y-direction. 

 

2.6 Conclusions and recommendations 
The objectives of this chapter were the following: 

- Identification of the assumptions underlying the assessment method in SIA D0237 [7]. 
- Comparison of the SIA D0237 method to the macro-element model, i.e., the Tremuri-model [10] 

which uses the macro-element by [25]. 
- Comparison of the 3muri-model [14] with the nonlinear beam element to the macro-element model. 
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The second and third objective was attained by analysing an example building with the three different 
models and comparing the results. This section summarises the results and formulates recommendations for 
the application of the SIA D0237.  

 

Identification of the assumptions underlying the assessment method in SIA D0237 

The spreadsheet calculations that are proposed in SIA D0237 are appealing because they are simple and 
finite element analyses not needed. However, as outlined in Section 2.4.1 they are based on several 
assumptions. These are: 

1. A predefined ratio of the gross sectional stiffness is used as effective stiffness in order to account for 
the effect of cracking. The SIA D0237 method assumes that the stiffness reduces uniformly over the 
wall height. This is a common assumption that is also made in the context of other modelling 
approaches (e.g. for the nonlinear beam element model) although the extent of cracking and 
therefore the stiffness reduction might vary over the height of the wall.  

2. The fundamental mode shape is assumed as a linear profile over the height of the building. This 
assumption is considered as very appropriate and does not need to be refined. 

3. The height of zero moment h0 of all walls is assumed as a preset value (typically h0=hs where hs is the 
first storey height). This choice of h0 aims at considering the coupling effect by slabs and spandrels 
on the moment profile of the walls. The analysis of the example building has, however, shown that 
the actual h0-values (i) differ between walls, (ii) differ from the assumed value (in the example, h0-
values between 0.5-2.5hs were obtained), and (iii) vary with increasing displacement demand.  

4. The change in axial forces in the walls due to the coupling effect by slabs and spandrels is neglected. 
As a result of assumptions 2 and 3, the global moment equilibrium of the structure is not satisfied. 

5. Spandrels reduce the deformable height of the wall. This is at present not considered in the SIA 
D0237 method. The displacement capacity of a building with spandrels could therefore be 
overestimated. 

6. Only failure modes that concern the first storey walls are considered by the SIA D0237 method. 
Although this is a common failure mode, failures of top storey walls are possible and would not be 
included in the assessment.  

7. The rigid body rotation that results from inelastic rotations of the first storey walls are neglected. 
The latter would, however, only be applicable if h0=0.5hs and therefore this assumption is not 
compatible with the general recommendation in SIA D0237 to set h0=hs. Neglecting the rigid body 
rotation leads to an underestimation of the displacement capacity. This seems to be in the case of the 
example building one of the main reasons why the SIA D0237 underestimates the capacity.   

8. The capacity curve of the building is obtained by adding arithmetically the capacity curves of the 
individual walls. These curves are obtained without considering compatibility of displacements at 
the storey levels. The displaced shapes of the individual walls are therefore compatible at the top and 
at the base but not at the storey levels in between.   

 

Analysis of the example building: Comparison of the results obtained with SIA D0237 method to the results 
obtained with the macro-element model 

The SIA D0237 method was compared to the macro-element model by analysing an example building. For 
this building, the macro-element model predicted a 2.5 times higher capacity than the SIA D0237 method. 
The capacity was evaluated in terms of PGA that would lead to a first storey drift. This difference in PGA 
that was obtained for the example building analysed here is neither an upper bound nor a lower bound 
estimate of typical differences that can be expected between the two methods but the differences are strongly 
dependent on the actual building configuration. Moreover, two assumptions of the SIA D0237 method were 
compensated by making corresponding adjustments to the macro-element model. These were: 

- Spandrels, despite being present in the original example building [32], were not included in the 
macro-element model. 

- Failure modes other than first storey failures were not considered in the macro-element model. 
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Recommendation for the use of the SIA D0237 method 

Evaluating whether the SIA D0237 method leads to conservative or non-conservative results is not straight 
forward as some assumptions tend to underestimate and some to overestimate the capacity of an URM 
building with RC slabs. The following recommendations are based on the results of this study and the 
authors’ judgment.  

It is felt that, due to assumption 6, the SIA D0237 method tends to produce conservative results for buildings 
without masonry spandrels, i.e., if the walls are only coupled by RC slabs. In this case, the results might, 
however, be rather conservative and therefore should be only used to verify the seismic performance of a 
structure. If the seismic performance check is not satisfied and retrofit measures are planned, it is 
recommended to use a more advanced assessment approach to avoid unnecessary interventions. If a larger 
set of buildings is analysed, it should be considered that assumption 6 might lead to an erroneous ranking of 
the structures that are most in need of interventions.  

This study did not treat buildings with spandrels. For buildings with spandrels it is therefore at present not 
possible to state whether the SIA D0237 tends to over- or underestimate the capacity. The analysis of a 
larger set of example buildings would be necessary. In the meantime, it seems, however, possible to improve 
the SIA D0237 method by using elastic frame analysis.  

- Improved shear span and axial force estimates could be obtained from an elastic equivalent frame 
model of the structure. The elastic model should be based on effective stiffness values. The nodes 
(intersections of walls and spandrels) should be modelled using rigid elements or assigning 
uncracked stiffness values. 

- The same model could be used to determine the yield displacement. 
- An elastic model where the stiffness of walls that are expected to undergo inelastic deformations 

could be used to estimate the ultimate displacement profile. First ideas in this regard were developed 
in [33]. 

The use of such elastic frame models could address the shortcomings related to the assumptions outlined at 
the beginning of this section.  

 

Analysis of the example building: Comparison of the results obtained with the nonlinear beam element 
model to the results obtained with the macro-element model 

The comparison showed that the Tremuri-model [10] which uses the macro-element by [25] and the 3muri-
model [14] with the nonlinear beam element yield in many regards similar results. Nevertheless, the macro-
element model predicts a 40% higher capacity than the nonlinear beam element model. Differences result 
from the different element formulation and in this regard in particular to the fact that the macro-model 
accounts for (i) an element elongation due to flexural deformations and (ii) a gradual reduction of the 
flexural stiffness due to decompression of the section and a reduction in shear stiffness due to shear cracking. 
The nonlinear beam element on the other hand is linear elastic up to the yield point. In the example analysed 
here, the ultimate drift capacities were set to large values and the ultimate displacement after the analysis 
evaluated as the top displacement for which a 0.4% first storey drift is reached. Note that the drift definitions 
that are implemented in the program differ between macro-element and bilinear element (see Sections 2.3.1 
and 2.5.1).  
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3 OUT-OF-PLANE BEHAVIOUR OF URM WALLS - EXPERIMENTAL 
OBSERVATIONS AND VALIDATION OF A NUMERICAL MODEL2 

 

 

Under earthquake loading modern unreinforced masonry (URM) buildings typically fail due to in-plane 
failure of the lower storey walls or due to out-of-plane failure of walls of the top storeys. In this paper, the 
out-of-plane failure of the top storey walls in modern URM buildings with stiff reinforced concrete (RC) 
floor slabs is investigated. The focus of this investigation lies on the boundary conditions that the RC slabs 
provide to the URM walls. More specifically, the paper investigates the influence of the in-plane 
deformations of flanking walls on these boundary conditions.  

Hence, the paper treats the interaction of in-plane and out-of-plane URM wall response. The interaction of 
in-plane and out-of-plane response has also been recently studied for URM infills [40]–[44] and URM walls 
[45], [46]. However, these studies consider the coupling of the in-plane and out-of-plane response of the 
same wall element when subjected to bi-directional excitation. Here, a URM building subjected to only a 
uni-directional excitation is considered and the influence of the response of walls that are loaded in-plane on 
the boundary conditions of the walls that are loaded out-of-plane is investigated. The paper focuses on 
modern URM walls constructed with hollow core clay bricks and cement mortar joints of normal thickness 
(~1 cm).  

The literature reports several experimental campaigns that investigate the dynamic out-of-plane behaviour of 
brick masonry walls under seismic excitation. An extensive study was carried out by the consortium ABK 
[47], in which twenty-two URM walls with different height-to-thickness ratios, were tested dynamically. The 
walls, which had rectangular cross sections, were built with different types of units (grouted clay bricks and 
grouted and ungrouted concrete blocks). The horizontal input motions applied at the top and bottom of the 
walls were obtained from nonlinear analyses of a one storey URM building using actual earthquake ground 
motions. The walls were pinned at the base while the top of the walls was free to rotate and displace 
vertically. An additional mass was placed on the top of the walls to simulate the weight of additional 
structural elements. The authors observed that after the formation of a mechanism the walls did not collapse 
immediately but developed a stable rocking mechanism with displacements significantly larger than before 
the onset of rocking.  

Griffith et al. [48] performed both static and dynamic tests on half-scale clay brick walls characterized by 
rectangular cross section and two different values of thickness. The test apparatus was composed of a shake 
table with a braced steel frame that provided lateral support to the top of the walls. The same displacement 
was imposed at the base and the top of the walls with the objective of representing boundary conditions of 
stiff floor diaphragms and neglecting in-plane drifts. The top of the walls were free to rotate and displace 
vertically. An axial load could be applied at the top of the wall by using six pre-tensioned springs. The test 
results underlined the importance of displacement rather than acceleration demand when determining 
whether or not a wall loaded out-of-plane will collapse under seismic loading. Meisl et al. [49] performed 
shake table tests on four clay brick multi-wythe rectangular walls, and also concluded that the peak 
displacement demand has a greater influence on out-of-plane collapse than the peak acceleration demand. 

                                                      
2 This chapter corresponds one to one to a manuscript that was submitted in February 2015 to the journal Earthquake 
Engineering & Structural Dynamics: Marco Tondelli, Katrin Beyer, Matthew DeJong “Influence of boundary condi-
tions on the out-of-plane response of brick masonry walls in buildings with RC slabs”.  
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The investigation of the seismic response of an out-of-plane loaded URM wall element as a component of a 
global building system was the focus of the experimental test performed by Simsir et al. [50]. The authors 
performed shake table tests on a half-scale building composed of two out-of-plane URM walls and two in-
plane reinforced masonry walls connected by floor diaphragms of varying stiffness. All walls had 
rectangular cross sections and were built with lightweight hollow concrete blocks. The out-of-plane loaded 
walls were free to rotate at their base while the top of the walls was free to rotate and displace vertically. The 
tests showed that diaphragm flexibility increased the out-of-plane displacement of the walls since increased 
flexibility resulted in an increase of the period and of the spectral displacement demand. In addition, the 
axial load and the wall mass significantly affected the out-of-plane response; collapse was observed only for 
the specimen subjected to reduced axial load and increased wall mass.  

Dazio [11] carried out shake table tests that aimed at investigating the influence of boundary conditions on 
the out-of-plane response of URM walls. Six test units, all with rectangular cross sections but different wall 
widths and slenderness ratios, were constructed with hollow core clay bricks and standard cement mortar. 
The test set-up was designed to provide five different boundary conditions at the top of the walls: a “simply 
supported” condition where the top of the wall was free to rotate and displace vertically, a “fixed” condition 
where rotation and vertical displacement at the top of the wall were fully restrained, and three intermediate 
conditions where the top support had varying values of axial and rotational stiffness and the axial load was 
applied with different eccentricities with regard to the wall axis. It was observed that the “Simply Supported” 
condition was not always the most critical but that an eccentric axial force can cause collapse for lower 
levels of shaking. Additionally, increased levels of axial load were found to favour a sudden transition from 
rocking to collapse.  

Penner and Elwood [51] carried out a shake table test on five URM wall specimens to investigate the effect 
of flexible diaphragms. The test units were multi-wythe rectangular walls built with solid brick units. The 
shake table setup included top and bottom springs that could be varied to represent different levels of 
diaphragms stiffness. The experimental campaign underlined that walls connected to flexible diaphragms are 
more stable than walls connected to stiff diaphragms. Additionally it was observed that for some boundary 
conditions the transition from rocking to collapse can occur very suddenly. 

The most recurrent parameters that were investigated by the experimental studies were the effect of wall 
slenderness [47], [48], [50], [51], axial load [48], [50], [51] and flexible diaphragms [49]–[51] on the out-of-
plane response of URM walls. With the exception of Simsir et al. [50], who included in-plane loaded walls 
and the top slab in the test setup, all the afore-mentioned tests studied the out-of-plane behaviour analysing 
the walls as single elements, separated from the rest of the structure. At the base, all studies placed the walls 
onto a foundation, which allowed the walls to rock. The tests were designed to provide idealised boundary 
conditions at the top of the out-of-plane loaded walls. The idealised boundary conditions at the top reflected 
in most cases a roller condition [47]–[51]. Only Dazio [11] modified the pinned condition at the top to model 
a certain rotational restraint and an eccentric axial force. All studies applied the same motion at the top and 
the bottom support. Three studies [49]–[51] placed springs between wall and support in order to account for 
deformations of flexible diaphragms, which result from the inertia force of the supported wall. It is 
interesting to note that none of the existing studies applied different motions at the top and the bottom in 
order to account for acceleration amplification over the height of the building and higher mode effects due to 
in-plane deformation of walls that are orthogonal to the out-of-plane loaded walls.  

Contrary to these previous studies, the aim of this paper is to investigate the influence of boundary 
conditions on the out-of-plane response of URM walls in buildings with stiff RC slabs, and the effect that in-
plane response of orthogonal walls has on the horizontal and vertical boundary conditions. In addition, the 
effect of different input motions at the top and bottom of the wall is investigated. In Section 3.1 the results of 
a uni-directional shake-table test performed on a four-storey structure built at half-scale will be presented 
and the observations from the test will be discussed. The four-storey structure was designed to provide 
different types of boundary conditions to the out-of-plane load-bearing URM walls. The observations from 
this experimental campaign were the motivation to investigate these boundary conditions more 
systematically through a numerical study. Section 3.2 presents the validation of a discrete element model, 
which is analysed using the software UDEC [52]. The model is then used in Section 3.3 to investigate the 
relative influence of three key boundary conditions, i.e., the difference in horizontal and vertical movement 
of the top and bottom slab and the effect of a horizontal support at the top.  
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3.1 Experimental campaign 
The shake table test presented in this section is part of a larger research initiative focused on the study of the 
seismic behaviour of structures with RC and URM walls, where the two structural systems are coupled by 
RC slabs [27]. The test was carried out at the TREES laboratory of the European Centre for Training and 
Research in Earthquake Engineering (EUCENTRE) in Pavia (Italy), within the scope of a SERIES grant of 
the FP7 programme. 

3.1.1 Test unit 
The test specimen was a four-storey structure built at half scale. The structure had a rectangular footprint and 
was symmetric along its longitudinal axis, i.e., the direction along which the uni-directional motion was 
applied. The test specimen was composed of two RC walls and six URM walls and these vertical elements 
were coupled by stiff RC slabs (Figure 3.1). Four out of the six URM walls were loaded in-plane and two 
out-of-plane (Figure 3.1). The plan distribution of the structural elements was conceived such as to provide 
different boundary conditions to the out-of-plane loaded URM walls of the North and the South face: at the 
North face, the out-of-plane loaded URM walls were flanked by two in-plane loaded URM walls, while at 
the South face the out-of-plane loaded URM walls were flanked by two in-plane loaded RC walls (Figure 
3.1). The longitudinal reinforcement of the RC walls passed through the slabs and the RC walls could there-
fore not rock on the slabs. The flanking elements, URM walls on one side and RC walls on the other, were 
expected to provide different vertical constraints to the RC slabs and therefore induce different vertical 
boundary conditions to the out-of-plane loaded URM walls. 

 

 

Figure 3.1. Test specimen: a) plan view and b) North-West view. 

 

To perform the test at a reduced scale the Artificial Mass Simulation scaling law was applied [53]. This law 
requires that at reduced scale the stiffness, strength and deformation capacities of the construction materials 
are the same as at full-scale. For the applied scaling factor of two, the density of all materials should have 
been doubled. However, this is generally impossible to achieve and therefore additional masses were added 
in the form of concrete blocks, which were placed on the four RC slabs. Lumping the additional mass 
reproduces the in-plane behaviour of the structure relatively accurately. In order to correctly scale the 
seismic response of the out-of-plane URM walls it would have been necessary to “smear” the additional 
mass that relates to these walls over their height. Instead, the additional mass for the out-of-plane loaded 
walls was also included by placing additional concrete blocks on the slabs. This was done for ease of 
construction, while ensuring that the in-plane seismic loading obeyed scaling laws and to avoid out-of-plane 
collapse prior to realisation of the full in-plane capacity. The first out-of-plane collapse of a URM wall was 



 

 

50 

obtained in the final run, in which the in-plane loaded URM walls lost their axial load bearing capacity and 
the test was stopped.  

The URM walls were constructed using half-scale hollow-core clay brick units that were specifically 
manufactured for this project. The units, with dimensions of 150 x 95 x 95 mm, were assembled using a 
standard mortar of class M15; both horizontal and vertical joints were 5 mm thick. The brick units were 
designed to reproduce the behaviour of full-scale bricks in masonry walls that were subjected to in-plane 
loading [54]. The out-of-plane loaded URM walls were 1.545 m long, 1.400 m high and 95 mm wide. A 
vertical section of these walls is shown in Figure 3.2. 

 

 

Figure 3.2. Vertical section of one of the out-of-plane loaded URM walls (dimensions in mm). 

 

Each out-of-plane loaded wall of the second, third and fourth storey was instrumented with five 
potentiometers. One potentiometer measured the out-of-plane horizontal displacement at mid-height of the 
walls; the latter was fixed to a support on the additional mass and therefore directly connected to the RC 
slab. Two additional potentiometers were used to measure the internal and external vertical displacement of 
the top and bottom row of bricks and were connected to the RC slabs. An optical measurement system was 
employed to record the displacement response of the structure during shaking. This system [55] uses high 
definition cameras to record the 2D displacement of reflecting markers that are glued to the structure and 
was used to record the in-plane displacements of the URM walls and RC slabs of the West façade of the 
structure.  

Figure 3.2 shows the retaining structures that were installed on the outer and inner side of the out-of-plane 
loaded URM walls. The purpose of these structures was to avoid the collapse of the walls onto the shake 
table. The retaining elements were installed at a clear distance of 56 mm from the walls (Figure 3.2), which 
corresponds to approximately 60% of the wall thickness, and therefore greater than the unstable point of 
static equilibrium for the out-of-plane mechanism.  

3.1.2 Ground motion, testing sequence and data set 
The input motion was the E-W component of the ground motion recorded at the Ulcinj-Hotel Albastros 
station during the April 15th, 1979 Montenegro Earthquake. The time axis of the record was divided by a 
factor of √2 to account for the fact that the test was carried out at half-scale. The record was selected for its 
broad frequency content. Nine dynamic tests were performed with increasing value of peak ground 
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acceleration (PGA), from 0.05 g to 0.9 g. Only the last two tests will be discussed in the following; these had 
PGAs of 0.7g and 0.9g respectively. A description of the in-plane damage and comparison to the predicted 
response is presented in Beyer et al. [13]. Additionally, the full data set collected during the experimental 
campaign is publically available at 10.5281/zenodo.11578. 

3.1.3 Visual observations of out-of-plane response of URM walls 
After each run, a survey of the structure was performed to investigate the progression of the level of damage 
to the structure. Up to run 8, some out-of-plane displacement occurred but no residual damage was observed 
in the out-of-plane loaded URM walls. During the last test (PGA = 0.9 g), significant out-of-plane 
displacements of the second to fourth storey walls of the North face were observed. The wall on the top 
storey clearly hit the inner support structure while the second and third storey walls did not touch the support 
structures. The mechanism of the top storey wall included the formation of bed joint cracks at the top and 
bottom and at mid-height of the wall, which was confirmed by an inspection after the test (Figure 3.3).  

 

 

Figure 3.3. Damage in the 4th storey out-of-plane loaded wall on the North side of the structure: a) full wall 
view, b) detail of the top crack and c) detail of the mid-height crack. 

 

The second and third storey walls did not hit the support structure but showed clear out-of-plane rocking 
displacements. For the second storey wall the third hinge seemed to have also formed at midheight while for 
the third storey wall it had formed at approximately three quarters of the storey height. Unlike the walls of 
the North face, the walls of the South face did not show any visible out-of-plane displacements. 

3.1.4 Discussion of recorded data for out-of-plane response of URM walls 
The seismic performance of the out-of-plane loaded URM walls and the influence of the flanking elements is 
documented in Figure 3.4. The figure presents the horizontal out-of-plane displacements of the 2nd, 3rd and 
4th storey walls on the North and South end of the structure (Figure 3.4a and Figure 3.4b, respectively). The 
out-of-plane displacement is the horizontal displacement measured by the potentiometer at mid-height of the 
walls minus half the relative displacement between the top and bottom slab. The latter are obtained from the 
optical measurements of the slab displacements. Figure 3.4 shows the maximum and minimum values of the 
out-of-plane displacement for tests 6, 8, and 9, corresponding to PGA values of 0.6, 0.7 and 0.9 g 
respectively (test 7 represented an after-shock and had a PGA of 0.4 g). For the previous tests the out-of-
plane displacements had been very limited. Positive values in Figure 3.4 represent displacements towards the 
South. Therefore, positive displacements represent inward displacements for the North walls and outward 
displacements for the South walls. 

Figure 3.4 shows that the North walls experienced significantly higher out-of-plane displacement than South 
walls. The minimum and maximum displacements of the 4th storey walls during the last test were -20 mm 
and +63 mm for the North wall, but only -7 mm and +4 mm for the South wall. The North walls were 
flanked by URM walls while the South walls were flanked by the RC walls. These flanking elements had a 
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significant influence on the boundary conditions and therefore on the response of the out-of-plane loaded 
walls.  

 

 

Figure 3.4. Out-of-plane horizontal displacement profiles: a) North walls, which are flanked by URM walls, 
and b) South walls, which are flanked by RC walls. 

 

Figure 3.4 also shows that for the South walls the displacement profiles are fairly symmetrical and the dis-
placement demands in the North and South direction are comparable. For the North walls, however, the out-
of-plane displacements are significantly larger in the South direction than in the North direction. These re-
sults suggest that the loading direction plays a role when the flanking elements are URM walls, and out-of-
plane rocking occurs, but not when the flanking elements are RC walls, which prevent nonlinear out-of-plane 
behaviour.  

The observed behaviour can be explained with a schematic diagram depicting global in-plane behaviour of 
the structure (Figure 3.5). Due to the overturning moment, the axial force in the outer structural elements 
varied with the loading direction. When the structure was pushed from South to North, the axial load in the 
structural elements on the North side increased and the axial load decreased in the structural elements on the 
South side. The opposite happened when the seismic load was reversed. The loading direction had therefore 
an influence on the axial force to which the out-of-plane loaded walls, which were located at the perimeter of 
the building, were subjected.  
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Figure 3.5. Schematic diagram of the effect of the loading direction: a) loading from South to North and b) 
loading from North to South. 

 

Additionally, the kinematic boundary conditions are largely dependent on the flanking elements: on the 
North side the RC slab was simply supported on the in-plane loaded URM walls and could therefore uplift 
when the axial load was reduced and the in-plane URM walls rocked. At the instant when the slab uplifted, 
the vertical restraint to the North out-of-plane loaded wall reduced and rendered it vulnerable to out-of-plane 
excitation. Note that due to the elongation of the wall when rocking out-of-plane, the axial force in the out-
of-plane loaded wall is not necessarily zero when the slab uplifts from the in-plane loaded wall. On the South 
side the RC walls restrained the RC slabs from uplifting and provided continuously a vertical restraint to the 
out-of-plane loaded wall.  

These observations are supported by the data presented in Figure 3.6, which includes:  i) the displacement 
time history of the fourth storey slab with respect to the foundation and with respect to the third storey slab, 
ii) the variation of the vertical distance between the two RC slabs framing the wall, where positive values 
correspond to an increase of distance between the two slabs (uplift) and iii) the out-of-plane mid-height 
horizontal displacements of the 4th storey URM wall on the North side, where positive values correspond 
again to displacements towards South. 

The figure confirms a highly asymmetrical behaviour of the wall response as out-of-plane displacements in 
the South direction were significantly higher than in the North direction. Additionally, the peak out-of-plane 
displacement (at around 12 sec) occurs simultaneously to the peak uplift of the slab of 23 mm, confirming 
the interaction between slab uplift and vulnerability to out-of-plane deformations. The maximum value of 
out-of-plane mid-height displacement of 63 mm corresponds to the maximum displacement allowed by the 
retaining structure for a rocking mechanism with hinges at the extremities and at mid-height of the wall (the 
one experienced by the wall according to the horizontal cracks observed after the test, Figure 3.3). This 
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proves that the wall, during the last test, touched the internal retaining structure and would have collapsed 
out-of-plane had the retaining structure not been installed. 

 

 

Figure 3.6. Time histories of a) horizontal displacement of the top storey slab with respect to shake table, b) 
horizontal displacement of the top storey slab with respect to the third storey slab, c) vertical uplift of the RC 
slab at the top of the wall with respect to the slab at the bottom of the wall and d) out-of-plane horizontal 
displacement at the mid-height of the 4th storey North side wall.  

 

3.2 Discrete element modelling 
The out-of-plane response of the North wall that failed will be analysed by means of a discrete element 
model using the commercial software UDEC [52]. The discrete or distinct element method (DEM), which is 
based on the work of Cundall [56] in the early 1970s, has been increasingly used over the years to analyse 
masonry structures. With DEM, the structure is modelled as an assemblage of discrete blocks, which can be 
either rigid or deformable. The blocks are separated by joint interfaces, along which the blocks can detach or 
slide without limit on relative displacement or rotation. Due to these features, DEM is particular suitable for 
analysing the dynamic behaviour of rocking masonry structures; past studies include investigation of the 
seismic behaviour of single blocks or block assemblages [57]–[59], masonry arches [57], [60], masonry 
facades [59], [61], free-standing columns [62], [63] and entire historical structures [64], [65].  

This section describes the model geometry, the assigned material properties, the definition of the boundary 
conditions and the assumptions with regard to the assigned damping for the dynamic analyses.  

3.2.1 Geometry and material properties 
The 2D model represents a cross section of one of the out-of-plane loaded URM walls (Figure 3.7). The 
model consists of 14 equal-sized blocks for the brick rows and two blocks that represent the top and bottom 
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slab. The block of the top slab is subdivided into two blocks: The outer block, to which the boundary condi-
conditions in terms of velocity histories are applied (see Section 3.2.2), and the smaller inner block, which is 
in contact with the top brick. The interfaces between the outer block and the inner block are assigned zero 
shear strength. Hence, when the outer block uplifts from the wall, the inner block slides downwards and lies 
on the top brick of the wall without applying an axial force to the wall (more precisely, the applied axial 
force at the top of the wall corresponds to the weight of the inner block, which is 0.096 kN/m). The interface 
between the inner block and the top brick is assigned the same interface properties as the interfaces between 
brick units. Due to the cohesive strength of the interface, the inner block prevents the sliding between top 
slab and wall, even if the wall uplifts. This top boundary condition was specified since sliding between wall 
and top slab was not observed in the test (Section 3.1.3). Most likely the mortar “fingers” reaching into the 
hollow core clay brick helped to prevent any sliding displacement.  

The mortar joints are represented by interfaces of zero thickness. The height of the bricks was therefore 
increased from the actual 95 mm to 100 mm to include also the average thickness of a mortar joint. The 
bricks are 95 mm wide. The block corners are rounded off with a radius r, which is an input parameter to the 
model (Figure 3.7c). This parameter defines also the position of the two sets of springs from the outer wall 
edge that represent the axial and shear properties of the interface. Considerations with regard to its value and 
its influence on the dynamic response are presented in Section 3.3.4.  

 

Figure 3.7. Geometry of the UDEC model (a). Detail of the top support when the top slab uplifts 
(deformation exaggerated) from the wall (b). Detail of brick with rounded corners (c). 

 

In this paper, the blocks representing the masonry units are rigid and the deformability is entirely allocated to 
the interfaces that represent the mortar joints. This hypothesis is typically reasonable for low to moderate 
axial load ratios. The joints were modelled as interfaces to which a Mohr-Coulomb constitutive model was 
assigned. All interface properties were derived from standard material tests results (see   
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Table 3.1), which involved vertical compression tests on masonry units and shear triplet tests [13]. Mortar 
samples were taken regularly during the construction of the shake table test unit and the construction of the 
test units for material testing. Standard mortar tests showed that the mortar used for the construction of the 
material test units was stronger than the mortar used for the construction of the fourth storey walls. Also, 
material test properties had been computed with regard to the gross width of the wall (b = 95 mm) while the 
effective width of the interfaces in numerical model was only beff = b−2r = 85 mm. To account for these 
differences, the interface properties of the numerical model were computed as follows: The cohesion 
assigned to brick interfaces in the numerical model was computed as the cohesion obtained from shear triplet 
tests times the ratio of the mortar tensile strength of the fourth storey walls (ftm,Storey4) and the mortar strength 
of the triplets (ftm,Triplet) and the ratio of nominal to effective wall width:  ܿ௎஽ா஼ = ்ܿ௥௜௣௟௘௧ ∙ ௧݂௠,ௌ௧௢௥௘௬ସ௧݂௠,்௥௜௣௟௘௧ ∙ ܾܾ − ݎ2 = 0.23 ∙ 2.623.23 ∙ 9585 = 0.209 (3.1) ܽܲܯ

The tensile strength assigned to brick interfaces in the numerical model was estimated from the cohesion 
cUDEC and the friction coefficient UDEC=Triplet assuming a parabolic tension cut-off: 

௧݂,௎஽ா஼ = ܿ௎஽ா஼2ߤ௎஽ா஼ = 0.2092 ∙ 0.7 = 0.149 (3.2) ܽܲܯ

The friction coefficient was obtained (UDEC = Triplet) directly from the triplet tests and corresponds to a 
friction angle Triplet of 35o. The elastic modulus Em,Wallette and the Poisson’s ratio Wallette of the masonry were 
obtained from compression tests on masonry wallettes. To account again (i) for the fact that the compression 
strength of the mortar used for the construction of the fourth storey wall (fm,Storey4) was less than that of the 
mortar used for the construction of the wallettes (fm,Wallette) and (ii) for the ratio of nominal to effective wall 
width, the normal stiffness of the brick interface was computed as: ܭ௡௡ = ௠ℎ௕௟௢௖௞ܧ ∙ ቆ ௠݂,ௌ௧௢௥௘௬ସ௠݂,ௐ௔௟௟௘௧௧௘ቇ଴.ଷ ∙ ܾܾ − ݎ2 = 4.500.1 ∙ ൬ 7.0413.95൰଴.ଷ ∙ 9585 = ݉ܽܲܩ 41.0  (3.3)

This equation uses the following relationships between mortar strength fm, brick strength fb, masonry 
compressive strength fk and the elastic modulus of the masonry Em [28]: ܧ௠ = 1000 ∙ ௞݂ (3.4)

௞݂ = ܭ ∙ ௕݂଴.଻ ∙ ௠݂଴.ଷ (3.5)

The shear stiffness was computed as (UDEC = Triplet): ܭ௧௧ = ௡௡2(1ܭ + (ߥ = 412(1 + 0.2) = 17.1 ݉ܽܲܩ  (3.6)

The interfaces between bricks and slabs were assigned the same stiffnesses as the interfaces between two 
bricks. This accounted for the fact that the masonry flexibility resulted mainly from the joints and not from 
the bricks, which would have justified a higher joint stiffness for the interfaces between wall and slabs.  

The masonry wallettes had not been weighed and therefore the density of masonry was estimated as mUDEC = 
1000 kg/m3. The Mohr-Coulomb law implemented in UDEC obeyed an elastic-brittle relationship in tension, 
i.e., upon reaching the tensile strength capacity, the tensile strength drops immediately to zero. However, the 
cohesion was not reduced upon reaching the shear strength of the interface.   
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Table 3.1. Masonry properties from standard material tests [13], [54]. 

E-modulus of the masonry for vertical compression Em,Wallettes (GPa) 4.50 

Poisson ratio Wallette (-) 0.20 

Cohesion cTriplet (MPa) 0.23 

Friction angle Triplet 35° 

Masonry compressive strength fcm,Wallette (MPa) 5.66 

Tensile strength of mortar for triplet test units ftm,Triplet (MPa) 3.23 

Tensile strength of mortar used for the construction of the shake table 
test unit ftm,Storey4 (MPa) 

2.62 

Compressive strength of mortar for wallettes test units fm,Wallette (MPa) 13.95 

Compressive strength of mortar used for the construction of the shake 
table test unit fm,Storey4 (MPa) 

7.04 

 

3.2.2 Definition of the boundary conditions 
In UDEC, dynamic boundary conditions are defined as velocity histories applied at the rigid block centre. 
The wall model was loaded in three steps: First, the gravity load of the wall itself was applied as vertical 
acceleration of 9.81 m/s2. Second, the axial force was applied as a constant downward velocity over a 
duration t of the top block. The applied displacements were computed to yield an axial force of 15.5 kN/m 
at the base of the wall. The axial force was obtained from a TREMURI [10] model of the test unit, which 
was validated by Mandirola [66] to assess the in-plane behaviour of the test unit. Third, the seismic loading 
of the wall was applied as horizontal and vertical velocity time histories at the outer top and the bottom 
block, which represent the slabs. These velocity time histories were derived from the displacement histories 
of the slabs, which were recorded by the optical measurement system [13]. The rotation of the top and 
bottom slab was set to zero since optical measurements showed that the rotations had been rather small 
(maximum value of 3.4x10-3).  

 

3.2.3 Modelling of the damping 
Damping was added through stiffness proportional Rayleigh damping, with the primary objective of 
damping out higher frequency vibrations which can cause individual blocks to unrealistic vibrate apart in the 
computational model [59], [60]. This was done by heavily damping the natural frequency associated with 
rotational vibration of individual bricks, while minimising the damping at lower frequencies which govern 
mechanism displacements [60]. The damping matrix is therefore: ܥ = β ∙ ܭ (3.7)

where K is the stiffness matrix. The rocking frequency r of a single block representing one of the brick rows 
was computed and a fraction of critical damping of  was assigned to this frequency, which can be 
approximated by [60]:  ω୰ଶ = 3 ∙ ௠,௎஽ா஼ܧ ∙ ܾ(ܾ − ଶ2(ݎ2 ∙ ௠,௎஽ா஼ߩ ∙ ℎ௕ଶ ∙ (ܾଶ + ℎ௕ଶ) (3.8)

The -parameter is therefore:  β = 2 ∙ ߱௥ߦ  (3.9)

The damping coefficient  could not be determined from experimental results. For this reason, Section 3.3.3 
investigates the sensitivity of the dynamic response to the assumed value of .  
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3.3 Validation of the numerical model against experimental results 
 

To validate the numerical model, the 4th storey wall of the North face was modelled and the numerical results 
in terms of out-of-plane displacement at mid-height, top and base rotation and failure mechanism were 
compared to the experimental response. The final model included a block rounding r = 5 mm and a damping 
coefficient of  = 20%. First, the model was validated for this final parameter configuration. Then, the 
sensitivity of the results with respect to r and was tested

3.3.1 Validation of the chosen model 
The model was validated for test 9, during which the wall hit the retaining structure at 9.6 sec, which will be 
considered in the following as the point of collapse. Figure 3.8a presents the comparison of the experimental 
and numerical time histories of out-of-plane displacements at mid-height of the wall; the out-of-plane 
displacement is again defined as the horizontal displacement at mid-height of the walls minus half the 
relative displacement between the top and bottom slab (Section 3.1.4). The numerical model is able to 
accurately predict the overall global behaviour of the wall even if it does not capture the small vibrations 
recorded in the shake table test between the two main peaks. The model also estimates the mechanism at 
collapse correctly (Figure 3.9). 

 

 

Figure 3.8. Comparison of numerical and experimental results for the final model of the 4th storey wall of the 
North face: Out-of-plane displacement at mid-height (a), uplift between slab and wall at the top (b), relative 

rotation between slab and wall at the top (c), relative rotation between slab and wall at the base (d). 
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Figure 3.9. Comparison of experimental and numerical out-of-plane displacement with deformed shapes at 
4.2 s and at failure at 9.6 s. 

 

Figure 3.8b shows the comparison between the experimentally observed uplift of the slab from the top brick 
(computed as average displacement of the two LVDTs at the top of the wall, Figure 3.2) and the vertical 
movement of the sliding element with respect to the top element recorded during the numerical analyses. 
Before reaching collapse of the wall, at 9.6 sec, the vertical movement of the slider is less than 4 mm. It 
seems plausible that the “mortar fingers” that reached into the bricks accommodated this movement and 
modelling the top boundary condition with a slider (see Section 3.2.1) therefore justified. Note that the 
movement of the slider is much less than the increase in distance between the bottom and top slab, which 
reached a maximum value of 23.8 mm before collapse (Figure 3.8). The difference is explained by the elon-
gation of the wall due to rocking.  

Finally, Figure 3.8c and 8d compare the experimental and numerical values of the top and bottom rotation of 
the wall respectively; also for these parameters there is a good correlation between the two sets of results. 

3.3.2 Effect of pre-damage 
In the experiment, the building was subjected to nine runs and only the last one led to the out-of-plane 
collapse of the fourth storey wall. It remains, however, open in which regard the previous runs influenced the 
response during the ninth run. Although a visual inspection after run 8 had not revealed any significant 
damage (Section 3.1.3), it cannot be excluded that hairline cracks had been present. To investigate the effect 
of the pre-damage, the wall was analysed by subjecting it first to run 8 and then to run 9. At the end of run 8, 
the numerical model showed cracks at the top and bottom interfaces of the wall. Figure 3.10 shows that this 
pre-damage had only a minor influence on the out-of-plane displacement during run 9. The mechanism that 
formed at collapse was also unaffected by the pre-damage.  

 

0 2 4 6 8 10 12

−20

0

20

40

60

80

Time [sec]

D
is

pl
ac

em
en

t [
m

m
]

 

 

South

North

Experimental

UDEC



 

 

60 

 

Figure 3.10. Mid-height displacement of the 4th storey wall of the North face: Comparison of numerical 
results when run 9 is applied to the undamaged wall and to the wall that had been pre-damaged by run 8. 

 

3.3.3 Sensitivity to the chosen damping level 
The choice of the damping level for discrete element analyses has been discussed by several authors (e.g. 
[57], [60], [62], [63]). The initial portion of the strong ground motion response of models was found to be 
rather insensitive to the damping level [62], [63] while continued strong shaking and the reduction in 
amplitude of the free vibration can be sensitive to the damping [63]. For rocking motions, the natural rocking 
period is not constant [67], and therefore it is impossible to specify a constant level of damping for a given 
mode. Specifying 0% damping at all frequencies can lead to a good approximation of the initial portion of 
the strong ground motion response [65], but can also lead to unrealistic vibration displacements at no-tension 
interfaces [59] and overestimation of the response to either continued strong shaking or large separated 
pulses in the ground motion [59]. This overestimation can be limited by specifying a small stiffness-
proportional damping level that eliminates the high frequency rotational vibration of individual blocks [60]. 
To investigate the sensitivity of the results with regard to the assumed damping level, Figure 3.11 shows the 
out-of-plane displacement at mid-height for damping ratios between  = 0-100% at the rocking frequency r 
(Eq. (3.8)). Since no mass proportional damping is specified, the damping level decreases with decreasing 
frequency. At the natural frequency of the wall (assuming a simply supported beam) the corresponding 
damping ratios vary therefore only between 0-1.0%.  
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Figure 3.11. Mid-height displacement of the 4th storey wall of the North face, sensitivity to damping level: 
0-10% (a), 15-25% (b) and 0-100% (c). 

 

The results fall into two groups: For the first group of analyses with 0-10%, the displacement histories 
show a very high frequency content which is related to the rocking of the individual blocks and suggests that 
the rocking motion of the individual blocks is not sufficiently damped. For the second group of analyses with 
5-100% this high frequency content largely disappears. All analyses of this second group predict wall 
failure at 9.6 s. They differ with regard to the predicted mechanism (central hinge between rows 7 and 10) 
and the amplitude of the displacements prior to failure.  

Of the six analyses of the second group, the one with 20% predicts the experimentally recorded 
displacements best and also the mechanism is well predicted with a central hinge forming at the mid-height. 
For these reasons, 20% at r = 2570 Hz was chosen as the final damping ratio; this corresponds to a 
damping ratio of 0.20% at the natural frequency of the wall.  
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3.3.4 Sensitivity with regard to the assumed block rounding 
The rounding of the blocks affects the location of the pivot points that characterise rocking and the elastic 
out-of-plane displacements before the springs that represent the interface are damaged and rocking starts. 
The position of the actual pivot point depends on the axial load ratio [68], the state of degradation of the 
mortar joints [68] and the depth of the groove that is often carved into the mortar joint.  

Under gravity load and when subjected to out-of-plane bending, the compression zone depth of the 
investigated wall can be approximated by: ܾ௖ = ܰ0.85 ௖݂௠,௎஽ா஼ = 15.5 ݇ܰ݉ᇱ ∙ 10.85 ∙ ܽܲܯ4.61 = 3.96 ݉݉ (3.10)

where N is the axial force under gravity loads and fcm,UDEC is the compressive strength of the masonry. If it is 
assumed that the pivot point is located at approximately half the compression zone depth, the rounding r 
should be set to bc / 2 plus the depth of the groove (~2 mm), i.e., to ~4 mm. Figure 3.12 shows the numerical 
results for three block rounding values. Overall, the response is not very sensitive to this range of block 
rounding. For r = 5 mm, the first peak and the mechanism are best predicted. For these reasons, r was set to 5 
mm.  

 

 

Figure 3.12. Mid-height displacement of the 4th storey wall of the North face: sensitivity to block rounding. 

 

3.4 The influence of dynamic boundary conditions on the out-of-plane 
response of URM walls 

This section investigates the influence of the dynamic boundary conditions on the out-of-plane behaviour of 
URM walls. The investigated parameters are the relative horizontal and relative vertical displacements 
between the bottom and top slab, as well as the effect of the sliding restraint at the top of the wall.  

3.4.1 Effect of relative horizontal displacement between slabs 
Figure 3.13 shows the numerical results of the 4th storey wall for different horizontal excitation at the top and 
the bottom. The result labelled “UDEC, = 1.0” corresponds to the analysis presented in Section 3.3.1, 
where the vertical and horizontal velocities of the top and bottom slab are the slab displacements that were 
measured during the shake table test. Note that the maximum displacement relative to the foundation 
measured at top floor slab was 59.4 mm (Figure 3.6), while the maximum difference between the horizontal 
displacements measured at the 3rd and 4th floor slabs was 17 mm.  
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To investigate the effect of differential top and bottom slab movements, analyses with the following top and 
bottom horizontal input velocities were carried out: ݒ௧ = ସݒ + ଷ2ݒ + ߙ ସݒ − ଷ2ݒ  (3.11)

௕ݒ = ସݒ + ଷ2ݒ − ߙ ସݒ − ଷ2ݒ  (3.12)

where v3 and v4 are the horizontal velocities of the third and fourth storey slabs. A value of = 1 yields the 
real input motions and = 0 the average input motions (Figure 3.13). Figure 3.13 shows further analyses for 
 -values between 0 and 1. Although all sets of input motions apply the same average acceleration of 
(v3+v4)/2, the maximum out-of-plane displacements differ because different mechanisms are activated. 
However, all analyses except the one for = 0 lead to collapse at t = 9.6 s.  

The results indicate that some relative displacement between the top and bottom of the wall was important 
because it created a mechanism needed to accommodate the relative displacements, which then affected 
rocking response. However, the magnitude of the relative displacement ( = 0.33 to 1.0) did not have a 
consistent effect on the results. Thus, while the presence of some relative displacement was important, the 
magnitude was less important, indicating that the effects of increasing magnitude (in the range tested) did not 
govern over the sensitivity of the rocking response.  

 

 

Figure 3.13. Mid-height displacement of the 4th storey wall of the North face: sensitivity to the difference in 
horizontal input motion at the top and bottom of the wall.  

 

3.4.2 Effect of relative vertical displacement between slabs 
The experimental results showed that the 4th storey wall developed its largest out-of-plane displacement 
when there was an uplift of the top slab due to rocking of the flanking wall (Section 3.1.4). At this instant, 
the vertical restraint at the top of the wall is weakened or completely absent and the wall is more vulnerable 
to deform and collapse out-of-plane. It was shown that the 4th storey North wall collapsed for a differential 
vertical displacement of the supports of 23 mm. Using the numerical model the 4th storey North wall, Test 9 
was analysed for different levels of vertical excitation. The horizontal excitation applied to the top and the 
base of the wall was the same for all analyses while the vertical excitation were scaled to match values in a 
range of 0-100% of the original vertical excitation (Figure 3.14).  

Only for the original input (“UDEC, 100% Uplift”) and a slightly reduced vertical input (“UDEC, 80% 
Uplift”) is it possible to observe the large displacement at 4.2 sec. Furthermore, only for values of 60-100% 
of vertical excitation was wall collapse at t = 9.6 sec observed. For the 40% case the gap between top slab 
and wall closes before the horizontal out-of-place displacement reaches the instability limit, which forces the 
wall to return to a stable configuration and induces strong oscillations. For zero or small vertical uplift (0-
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20%), limited or no out-of-plane deformations are observed. Zero or 20% vertical uplift is representative of 
the boundary conditions of a wall flanked by RC walls, e.g. the 4th storey South wall, for which no 
significant out-of-plane displacement was observed (Figure 3.4b). 

 

 

Figure 3.14. Mid-height displacement of the 4th storey wall of the North face, sensitivity to vertical uplift: 0-
40% of vertical uplift (a) and 60-100% of vertical uplift. 

3.4.3 Effect of sliding restraint at the top of the wall 
In the UDEC model, the top slab was modelled as composed by two elements, a main outer element and a 
secondary inner element that could slide vertically with regard to the outer element (Section 3.2.1). This 
modelling solution provides a horizontal restraint to the top of the wall when the top slab uplifted from the 
wall and aimed to represent the restraining action of the mortar fingers reaching into the holes of the bricks. 
Figure 3.15 shows the numerical result if this horizontal restraint is not modelled (“UDEC without slider”): 
the wall collapses out-of-plane at the first peak displacement, which does not capture the response observed 
in the test. This is also confirmed by the mechanism, which is a simple rigid body overturning mechanism 
with a single hinge at the base. Modelling this horizontal restraint (“UDEC with slider”) seems therefore 
essential for capturing the experimental response. Further, for buildings of this type where slab uplift could 
occur, it is important to prevent complete separation and loss of lateral restraint at the top of the wall. 
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Figure 3.15. Mid-height displacement of the 4th storey wall of the North face: different top restraint 
modelling options. 

 

3.5 Conclusions 
The paper investigates experimentally and numerically the out-of-plane response of URM walls in buildings 
with stiff RC slabs. A discrete element model was set up and validated against the response of the 4th storey 
wall that failed out-of-plane. Three new findings are presented:  

 The out-of-plane response is controlled by the vertical restraint that is provided by the top slab. The 
largest out-of-plane displacements were observed when the top slab uplifted from the wall. This 
uplift was caused by rocking of flanking walls that were orthogonal to the wall that was loaded out-
of-plane. Numerical analyses show that with less than 60% of this uplift, the wall would not have 
collapsed out-of-plane. The uplift of the slab from the wall seems therefore a key parameter in the 
out-of-plane response of URM walls in buildings with stiff RC slabs.  

 Although the slabs uplifts from the wall, it was still able to provide a horizontal restraint at the top of 
the wall. Numerical results show that if this horizontal restraint is omitted, a global overturning 
mechanism results without a hinge at mid-height. In the experiment and the model with horizontal 
top restraint, a mechanism with a hinge at the top and bottom and approximately mid-height formed.  

 In the experiment, the motions naturally differed at the top and bottom of the walls due to the 
amplification of motions over the height of the structure and higher mode effects. The top slab of the 
wall that was analysed (4th storey slab) was therefore subjected to larger horizontal accelerations 
than the bottom slab (3rd storey slab). Eliminating these relative horizontal accelerations, while 
maintaining the experimentally observed vertical slab uplift, also eliminated the out-of-plane rocking 
response in the numerical model. This indicates that it was not only the absolute out-of-plane 
accelerations and the slab uplift that affected behaviour, but the relative horizontal acceleration of 
the top and bottom of the wall also played a role. Therefore, differential floor motion may also be 
relevant for stiff slabs, not just for flexible slabs.  
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4 OUT-OF-PLANE BEHAVIOUR OF URM WALLS – PARAMETRIC STUDY 

 

 

When evaluating the seismic performance of unreinforced masonry (URM) buildings, the out-of-plane 
stability of URM walls is assessed through simplified approaches, which typically provide limits on the wall 
slenderness ratio hw/tw. This chapter uses the numerical model that was validated in the previous section to 
analyse a large range of wall configurations and input motions. The results are compared to the maximum 
slenderness ratios provided in different codes.  

4.1 Wall thickness and slenderness limits in codes 
The slenderness limitations hw/tw in the Swiss pre-code SIA 269/8 [34] are a function of the boundary 
conditions, the peak ground acceleration fSagd and the minimum compliance factor min. The ratio of wall 
height hw to wall thickness tw is limited by ℎ௪ݐ௪ ≤ ݇ ∙ ௙ܵܽ௚ௗߛ௠௜௡ߙ݃ ≤ ඨ  ௙ܵܽ௚ௗߛ100݃

 

(4.1)

The factor k represents the boundary conditions; in buildings with RC slabs the factor k is set to 2.0 [34]. 
The parameter g is the acceleration due to gravity.  

The document SIA 2018 [69] provides slenderness limits for URM walls as a function of the seismic region, 
of the construction work class and of the position of the wall in the building (Table 4.1). Unlike the pre-code 
SIA 269/8, which only considers the peak ground acceleration as input, it therefore accounts indirectly for 
the amplification of the motion over the height of the building.  

Table 4.1: SIA 2018 [69]: Limits on slenderness ratios of URM walls. 

Seismic region / Construction work class 
Z1 / CO I 

Z1 / CO II 

Z2 / COI 

Z2 / CO II 

Z3 / CO I 

Z3 / CO II 

Z1-3 / CO III 

Upper storeys of a multistorey structure ≤ 18 ≤ 17 ≤ 17 

Bottom storey of a multistorey structure ≤ 20 ≤ 19 ≤ 18 

All the other cases ≤ 19 ≤ 18 ≤ 17 

 

EC8 – Part 1 [12] recommends minimum wall thicknesses of 240 mm for URM walls in regions of high 
seismicity while the minimum thickness is reduced to 170 mm for regions of low seismicity. The maximum 
slenderness ratios are set to 12 and 15 for regions of high and low seismicity respectively. The Italian code 
NTC08 [70], [71] requires for high seismic zones (Italian Zones 1-3) a minimum thickness of 240 mm and a 
maximum slenderness of 12, which corresponds to the EC8 requirements for high seismicity regions. For 
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structures in low seismic zones (Zone 4) the requirements are, however, stricter than in EC8: the minimum 
required thickness is 200 mm while the maximum slenderness is 20. 

4.2 Computation of floor accelerations 
The nonlinear time history analyses that are carried out in this chapter require the definition of the time 
histories of the floor accelerations at the bottom and at the top of the wall. To obtain these time histories, five 
ground motions are selected and a 2D model of a four storey reference structure is analysed using the 
software Tremuri [10]. From these analyses the acceleration time histories of the third and fourth floor are 
extracted and used as input definition for the parametric analyses of the out-of-plane loaded walls (Section 
4.3).  

4.2.1 Choice of records 
Griffith et al. [72] used five real and one artificial accelerogram for their study on equivalent SDOF systems 
for out-of-plane loaded URM walls. They chose these records for their different ground motion 
characteristics, which are reflected in the different spectral shapes. Since the study follows up on the study 
by Griffith et al., the five real records of that study are used for the study presented here (Table 4.2, Figure 
4.1); the artificial record was not used as it was not publically available. All five ground motions do not 
show a strong pulse, which would be representative of near-field effects.  

 

Table 4.2: Ground motions used for the numerical study and their characteristic values   

Label [72]  Earth-
quake 

Date Magn
itude 

Station PGA 
[m/s2] 

Ground 
type 

Compo
nent 

Record filename 

ElCentro1) Imperial 
Valley 

18.5.  
1940 

6.9 ElCentro 3.13  NS ELCENTRO.DAT 

Taft2) Kern 
County 

1952 7.4 Taft 
Lincoln 
School 

1.74 D EW TAF111.AT2 

San 
Salvador2) 

San 
Salvado
r 

1986 5.8 National 
Geografic
al Inst 

6.00 D NS NGI270.AT2 

Gemona3) Friuli 15.9. 
1976 

6.1 Gemona 6.36 B EW IV.GMN.HNE.D.19
760915.031518.C.A
CC.ASC 

Sturno2) Irpinia 23.11. 
1980 

6.9 Sturno 3.51 B NS A-STU270.AT2 

1) Source: Chopra [73] 

2) Source: PEER NGA-database [74] 

3) Source: Itaca 2.0 http://itaca.mi.ingv.it [75], [76] 
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Figure 4.1: Acceleration time histories of five accelerograms that are used for the parametric study. 

 

4.2.2 Model for computing acceleration at floor levels 
Griffith et al. [72] used the ground motion records directly for the parametric study on the out-of-plane 
behaviour of URM walls. In modern URM buildings with RC slabs, the walls that will be most susceptible to 
out-of-plane failure are the walls of the top storeys. For this reason, in this study the input motion for the out-

0 5 10 15 20 25 30 35
−4

−2

0

2

4

G
ro

un
d 

ac
c.

 [
m

/s
2 ]

Time [s]

Unscaled ground motion
ElCentro

a)

0 5 10 15 20 25
−10

−5

0

5

10

G
ro

un
d 

ac
c.

 [
m

/s
2 ]

Time [s]

Unscaled ground motion
NGI270

c)

0 10 20 30 40 50 60
−2

−1

0

1

2

G
ro

un
d 

ac
c.

 [
m

/s
2 ]

Time [s]

Unscaled ground motion
TAF111

b)

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

G
ro

un
d 

ac
c.

 [
m

/s
2 ]

Time [s]

Unscaled ground motion
Friuli_Gemona_IV_GMN_HNE

d)

0 5 10 15 20 25 30 35 40
−4

−2

0

2

4

G
ro

un
d 

ac
c.

 [
m

/s
2 ]

Time [s]

Unscaled ground motion
A−STU270

e)



 

 

70 

of-plane study will be computed using a simple model of a four storey URM building and the third and 
fourth storey level response will be taken as input motions. The 2D model consists of two URM walls, each 
of a length of 3 m, which are coupled by 0.2 m thick RC slabs (Figure 4.2). The storey heights are 3 m and 
the clear distance between the walls 2 m. The structure is regular over the height and the storey masses M are 
tuned in such a way that the first effective period of the structure is 0.30 s, 0.45 s, and 0.60 s, respectively. 
The axial load at each storey due to gravity loads is computed as N=gM/2 assuming that the mass is largely 
concentrated in the slabs and half the weight of the slab is carried by walls orthogonal to the direction of 
excitation.  

 

Figure 4.2: Tremuri model for computing storey responses 

 

Inelasticity in the structural behaviour is known to affect the floor response spectra significantly (e.g. [77]). 
To derive the input motions at the 3rd and 4th storey level, the inelastic response of in-plane loaded walls 
should therefore be considered. To reach reasonable levels of inelasticity the following procedure was 
adopted: When designing standard buildings, a seismic hazard level corresponding to a return period of 475 
years is considered and standard buildings are expected to reach for this return period the limit state 
“Significant Damage” [19]. URM walls failing in shear are expected to reach at this limit state an interstorey 
drift of 0.4%. The accelerogram is therefore scaled in such a way that the first storey drift corresponds to 
0.4% (accepted variation: ±5%). For comparison, also the response of the elastic structure was computed. 
The ratio R of the maximum base shear of the elastic structure to the inelastic structure varies for the three 
structures with T=0.30 s, 0.45 s and 0.60 s subjected to five records between 1.3 and 3.8 with one outlier of 
5.2 (Table 4.3). These values are values that could also be reached for more rigorous code designs, albeit 
they are somewhat higher than typical force-reduction factors used in seismic design. Figure 4.3 shows the 
acceleration response spectra that one obtains for the scaled ground motions.  

For the analysis, the out-of-plane response of a fourth storey wall will be analysed. Such a wall is supported 
at the base by the third floor slab and at the top by the fourth floor slab. To gauge the influence of using an 
average accelertaion rather than defining the third and fourth floor accelerations at the bottom and top of the 
wall respectively, the average acceleration of the third and fourth storey is computed. This acceleration is in 
the following referred to as the 4th storey mid-height acceleration or short mid-height acceleration.  
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Table 4.3: Scaling factors and force reduction factors for the three systems with T=0.30 s, 0.45 s, 0.60 s 
subjected to the five records.  

 T=0.30 s T=0.45s T=0.60 s 

Earthqua
ke  

PGAscaled 

[m/s2] 

PGAscaled/ 
PGAorig 

[-] 

R1) 

[-] 

PGAscaled 

[m/s2] 

PGAscaled/ 
PGAorig 

[-] 

R1) 

 [-] 

PGAscaled 

[m/s2] 

PGAscaled/ 
PGAorig 

[-] 

R1) 

 [-] 

ElCentro 3.35 1.07 1.98 2.64 0.84 3.08 2.37 0.76 3.57 

Taft 3.84 2.20 3.04 2.21 1.26 3.78 2.37 1.36 3.06 

San 
Salvador 

2.51 0.42 1.44 1.80 0.30 1.90 1.57 0.26 2.43 

Gemona 2.93 0.46 1.31 2.18 0.34 1.68 1.88 0.29 2.01 

Sturno 3.97 1.13 5.22 2.27 0.65 2.00 1.57 0.45 1.42 

Average 3.32 1.06 2.60 2.22 0.68 2.49 1.95 0.62 2.50 

1) R=maximum base shear of elastic system / maximum base shear of inelastic system 
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Figure 4.3: Ground motions, scaled and unscaled acceleration response spectra for 5% damping 

 

4.2.3 Floor response spectra obtained from numerical analyses 
Figure 4.4 and Figure 4.5 show the floor spectra for the inelastic and elastic model respectively. The floor 
spectra are computed using the average response of the third and fourth storey as input. For the elastic 
models, the maximum amplification of the acceleration occurs around the fundamental period of the 
structure. For the inelastic models, the maximum amplification occurs for longer periods since the 
fundamental period elongates as the structure undergoes inelastic deformations.  

Figure 4.6 shows as example the floor spectra of the inelastic structure with a fundamental period of T=0.3 s. 
This plot shows next to the spectra for the average acceleration but also the spectra of the third and fourth 
storey. The difference between the spectra varies between records but is in general between 0-20%.  
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Figure 4.4: Inelastic model: Storey acceleration and displacement response spectra for midheight of fourth 
storey, 5% damping. The vertical line indicates the fundamental period of the elastic structure.  
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Figure 4.5: Elastic model: Storey acceleration and displacement response spectra for midheight of fourth 
storey, 5% damping. The vertical line indicates the fundamental period of the elastic structure.  
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Figure 4.6: T=0.3 s: Comparison of response spectra at third and fourth storey and midheight of fourth 
storey, 5% damping 
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4.2.4 Comparison of floor response spectra obtained from numerical analyses to results 
from code approaches for estimating the floor response spectra 

 

Both the SIA 261 [78] and the EC 8 [12] provide formulae for estimating the storey acceleration spectra. 
These spectra are provided for the design of non-structural elements but are applied here to estimate the out-
of-plane demand on URM walls. In EC8, the spectral acceleration at level Z above the foundation within a 
structure is given as: 

 
 2

1

3 1
0.5

1 1
a

a

Z H
S S S

T T
 

 
   
   

 (4.2)

where  is the peak ground acceleration; S is the coefficient accounting for the site class; H is the total height 
of the structure; T1 is the vibration period of the first mode of the structure and Ta is the period of the non-
structural element. The Swiss standard SIA 261 is in many ways based on the EC8 and therefore the 
equation is very similar: 

 
 2

1

3 11 1
0.5

1 1

g g
a f f

a aa

a aZ H
S S S

g q g qT T
 

 
   
   

 (4.3)

where f is the importance factor; agS/g is equivalent to S in the equation of EC 8; qa is the q-factor of the 
non-structural element. For f =1 and qa =1 the SIA 261 equation corresponds to the EC 8 equation and 
therefore only the latter will be discussed in the following. 

 

Figure 4.7 and  

Figure 4.8 show the comparison of the floor response spectra obtained for the inelastic and elastic model 
respectively with regard to the prediction by EC8. Since the code formula for Sa does not account for the 
lengthening of the structure’s fundamental period due to inelastic response, it predicts the largest 
amplification always for the fundamental period of the elastic structure. As a result, for the inelastic 
structure, this amplification occurs for periods that are too short ( 

Figure 4.7). The maximum spectral accelerations are well predicted for the inelastic model but underestimat-
ed for the elastic model. Due to the lower bound spectral acceleration value, which is taken equal to the peak 
ground acceleration, the shake of the spectral displacements is not correctly captured. The latter are im-
portant as future codes might include displacement-based assessment methods for the out-of-plane response 
of URM walls.  
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Figure 4.7: Inelastic models: Storey acceleration and displacement response spectra for midheight of fourth 
storey, 5% damping. Comparison to EC8 floor spectra.  
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Figure 4.8: Elastic models: Storey acceleration and displacement response spectra for midheight of fourth 
storey, 5% damping. Comparison to EC8 floor spectra.  
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4.3 Parametric study 
To assess the performance of the slenderness limits that codes propose for assessing the out-of-plane stability 
of URM walls (Section 4.1), a parametric study with in total 960 nonlinear analyses was conducted. The 
following sections describe the numerical model (Section 4.3.1), the parameters that are investigated 
(Section 4.3.2), the results of the parametric study (Section 4.3.3) and the comparison of these results to the 
slenderness criteria included in current codes (Section 4.3.4).  

4.3.1 Numerical model used for the analysis 
The out-of-plane response was analysed using the code UDEC [52]. The model is based on the numerical 
model of the previous chapter but instead of the half-scale model a full-scale model is now analysed. The 
wall is 2.8 m high while the wall thickness is one parameter that is varied within the scope of the parametric 
study (Figure 4.9). The wall is supported at the top and the bottom by a concrete slab. Unlike in the analyses 
presented in the previous chapter, the axial load P(t) that is applied at the top of the wall is maintained 
constant throughout the analysis. The wall is analysed for horizontal input velocities that are applied to the 
top and bottom slab. The vertical velocity of the bottom slab is set to zero. The vertical movement of the top 
slab is not restraint since the force boundary condition P(t)=P0 is applied. The top slab is therefore always in 
contact with the wall and a “slider” as in Chapter 3 is not necessary. The assumed material properties are 
summarised in Table 4.4.  

 

 

 

Figure 4.9: Parametric study: Numerical model for UDEC analyses 

 

Table 4.4. Masonry properties for discrete element model used in the parametric study 

E-modulus of the masonry for vertical compression (MPa) 5000 

G-modulus of the masonry (MPa) 1875 

Cohesion of mortar joints (MPa) 0.23 

Friction angle of mortar joints 35° 

Masonry compressive strength (MPa) 5.00 

Tensile strength of mortar joints (MPa) 0.123 

Density of masonry (kg/m3) 1200 
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4.3.2 Investigated parameters 
Six different parameters were investigated within the scope of this parametric study. These parameters are:  

- The ground motion record 
- The fundamental period of the structure 
- The input velocities derived from the inelastic vs the elastic building models 
- The difference in input velocities at the top and bottom of the wall (=0 and =1) 
- The wall thickness 
- The axial load ratio 

In total 960 analyses were conducted. The following paragraphs outline how the different parameters were 
varied. 

Ground motion record: Five different records were used for the analyses (Section 4.2.1). None of the records 
featured a velocity pulse that would be characteristic of a near-field effect. The records were scaled to reach 
for the inelastic building model a first storey drift of 0.4%. The acceleration response spectra of these scaled 
records are shown in Figure 4.3.  

Fundamental period of the structure: The fundamental period influences the frequency content of the floor 
accelerations (Section 4.2.3). Also the peak ground acceleration that is required to reach a first storey drift of 
0.4% (Table 4.3) reduces with increasing fundamental period. As outlined in Section 4.2.2 the storey masses 
were tuned such to obtain fundamental periods of 0.3 s, 0.45 s and 0.6 s for the four storey structure.  

Inelastic vs elastic building model: As described in Section 4.2.3, the ground motion was scaled to reach 
0.4% first storey drift for the inelastic building model. The same scaled ground motion was then applied to 
an elastic building model and the third and fourth floor acceleration determined. Whether a building behaves 
elastically or inelastically has an influence on the frequency content of the floor accelerations and on the 
amplification of the accelerations around the fundamental period. For an elastic behaviour of the building the 
floor accelerations are amplified more strongly but in a narrower band than for an inelastic behaviour of the 
building. For the inelastic building longer periods than for the elastic building are amplified due to the 
elongation of the fundamental period as a result of the inelastic deformations (Section 4.2.3).  

Same vs different input velocities at the top and bottom: Many previous studies on the out-of-plane response 
of URM walls used simplified models that required that the top and bottom of the wall were subjected to the 
same acceleration time history. The advanced discrete element model that is used here allows to analyse also 
walls that are subjected to different motions at the top and bottom, which reflect the difference in motion of 
the third and fourth floor. The analyses of the previous chapter showed that different input motions at the top 
and bottom can lead to a larger out-of-plane response (Section 3.4.1). To investigate the influence of the 
different input motions at the top and bottom, the results are compared to the results obtained when the 
average velocities is applied at the top and bottom. For convenience the equations of Section 3.4.1 that 
define the input velocities at the top (vt) and at the bottom (vb) of the slab are repeated here:  ݒ௧ = ସݒ + ଷ2ݒ + ߙ ସݒ − ଷ2ݒ  (4.4)

௕ݒ = ସݒ + ଷ2ݒ − ߙ ସݒ − ଷ2ݒ  (4.5)

where v3 and v4 are the horizontal velocities of the third and fourth floors as obtained from the Tremuri 
models. A value of = 1 yields the real input motions which are different at the top and the bottom of the 
wall and = 0 the average input motions.  

Wall thickness: The wall thickness was varied between 12.5 cm, 15 cm, 17.5 cm and 25 cm. The wall height 
was for all models 2.8 m. Changing the wall thickness alters therefore also the wall slenderness hw/tw to 
values between 11.2 and 22.4.  

Axial load ratio: The axial load per metre wall length that was applied at the top of the wall was varied 
between 0 and 0.4%twfc where fc is the compressive strength of the masonry (fc=5 MPa). This corresponds to 
the axial loads as indicated in Table 4.5. The axial load at the base results from the applied axial load, the 
weight of the wall and the weight of the top slab. The weight of the wall is 4.1 kN, 4.9 kN, 5.8 kN and 8.2 
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kN for the four wall thicknesses. The dimensions of the top slab are 0.5 x 0.1 m. The top slab is assigned the 
same density as the wall and therefore its weight is 0.6 kN.  

 

Table 4.5: Axial loads at the base of the walls as function of the nominal axial load ratio  and the wall 
thickness tw. Values in brackets are actual axial load ratios at the wall base that include the applied axial load, 
the weight of the wall and the weight of the top slab.   

 =0% =1% =2% =4% 

tw=125 mm 4.7 kN (0.8%) 11.0 kN (1.8%) 17.2 kN (2.8%) 29.7 kN (4.8%) 

tw=150 mm 5.5 kN (0.7%) 13.0 kN (1.7%) 20.5 kN (2.7%) 35.5 kN (4.7%) 

tw=175 mm 6.4 kN (0.7%) 15.1 kN (1.7%) 23.9 kN (2.7%) 41.4 kN (4.7%) 

tw=250 mm 8.8 kN (0.7%) 21.3 kN (1.7%) 33.8 kN (2.7%) 58.8 kN (4.7%) 

 

 

4.3.3 Results of parametric study 
This section presents and discusses the results of the study with regard to the six parameters outlined in the 
previous section. 

Wall thickness: Figure 4.10 shows the ratio of the maximum normalised out-of-plane displacement max/tw 
for different wall thicknesses. These maximum normalised out-of-plane displacements are computed as the 
absolute displacement at midheight divided by the wall thickness. If a value equal or larger than one is 
attained, the wall is considered as having failed and the value of the normalised wall displacement is set to 
one. The normalised out-of-plane displacements are in general either very small or equal to one. Hence, the 
wall undergoes either very small out-of-plane displacements or collapses out-of-plane. When the input 
motion was derived from the inelastic building model and the average velocity was used as top and bottom 
input (=0, Figure 4.10a), no wall failed. The largest number of walls failed when the input was derived 
from the elastic building model and different top and bottom velocities were defined as input (=1, Figure 
4.10d). This is also confirmed by Figure 4.11, which shows that for the latter case 40% of the 12.5 cm thick 
walls and 10% of the 25 cm thick walls failed. In Figure 4.11 all walls whose maximum normalised out-of-
plane displacements were smaller than one were considered as walls that did not fail.  
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Figure 4.10: Parametric study: Ratio of maximum normalised out-of-plane displacement max/tw for different 
wall thicknesses.  
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Figure 4.11: Parametric study: Percentage of walls that failed / did not fail for different building models 
(inelastic / elastic) and input definitions (=0 and 1). The colours of the bars show the records: R1=Sturno, 
R2=ElCentro, R3=Gemona, R4=San Salvador, R5=Taft. 

 

Axial load ratio: Two well-known trends are noticeable with regard to the axial load ratio (Figure 4.12 and 
Figure 4.13): First, the larger the axial load ratio, the less susceptible the wall is to out-of-plane failure. Sec-
ond, the larger the axial load ratio, the more sudden the out-of-plane failure [11]. As a result, for an axial 
load ratio of 4% there are no walls that undergo a maximum normalised out-of-plane displacement between 
0.1 and 1. The walls are subjected either to very small out-of-plane displacements less than 0.1tw or the wall 
collapses out-of-plane (max/tw=1).  

Ground motion record: Figure 4.11 shows the distribution of the walls that failed / did not fail for the differ-
ent records. For the inelastic building model too few walls failed as that clear trends could be identified. For 
the elastic building models, the Gemona and San Salvador records contribute to a lesser extent to wall fail-
ures than the other three records.  For the buildings with a fundamental period of 0.3 s the floor accelerations 
are smallest for these records if periods shorter than 0.7 s are considered. Note that it is not possible to de-
termine a rocking period of the out-of-plane loaded walls as the period elongates with rocking amplitude 
(e.g. [72]).  
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Figure 4.12: Parametric study: Ratio of maximum normalised out-of-plane displacement max/tw for different 
axial load ratios. 

The input velocities derived from the inelastic vs the elastic building models: Figure 4.11 and Figure 4.13 
show the distribution of failure / no failure for the different input models. They clearly show that out-of-
plane failure is more likely to occur in buildings that do not develop any significant inelastic deformations in 
their in-plane loaded walls. The analyses conducted here neglect of course any interaction of in-plane and 
out-of-plane resistance. Shear cracks due to in-plane loading can reduce the out-of-plane bending capacity of 
URM walls, if the walls are also supported along the vertical edges. Neglecting the interaction of in-plane 
and out-of-plane resistance is therefore a simplification. It is, however, justifiable since only vertically 
spanning walls are considered (vertical edges not restraint) and since in-plane damage of the top storey walls 
is typically unlikely.  

The difference in input velocities at the top and bottom of the wall (=0 and =1): Figure 4.11 and Figure 
4.13 confirm the findings from the analyses conducted in Section 3.4.1, which showed that the difference in 
horizontal excitation at the top and bottom increases the likelihood of out-of-plane failure when compared to 
analyses in which the wall is subjected to the same excitation at the top and bottom. In real buildings the out-
of-plane loaded walls will be subjected to different excitations at its top and bottom since the floor motions 
of two floors are not the same. The differences are rather significant: For the inelastic building models the 
average ratio of wall failures increases from 0% (=0) to 5.4% (=1) and for the elastic building models 
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from 4.2 % (=0) to 26.7% (=1). This finding supports further the notion obtained from Section 3.4.1 that 
the different input motions at the top and bottom of the wall should be considered when assessing the out-of-
plane vulnerability of URM walls.  

 

 

 

Figure 4.13: Parametric study: Percentage of walls that failed / did not fail for different building models 
(inelastic / elastic) and input definitions (=0 and 1). The colours of the bars show the axial load ratio (0%, 
1%, 2%, 4%). 

 

Fundamental period of the building: Figure 4.14 shows for the input motions that were obtained from the 
elastic building with =1.0 the influence of the fundamental period of the building on the distribution of wall 
failures. The building with the shortest period (T=0.3 s) leads overall to the largest number of out-of-plane 
failures. This trend is even stronger if walls with larger axial load ratios (Figure 4.14a) or larger wall thick-
nesses (Figure 4.14b) are considered. A larger axial load ratio or a larger wall thickness rigidifies the system 
and it is therefore more susceptible to input motions with a higher frequency content. 
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Figure 4.14: Parametric study: Percentage of walls that failed / did not fail for the elastic building models 
with different inputs at the top and bottom of the wall (=1). The colours of the bars show the fundamental 
periods of the buildings (0.3 s, 0.45 s, 0.6 s). Plot (a) shows the distribution in function of the nominal axial 
load ratio and plot (b) the distribution in function of the wall thickness.  

 

 

4.3.4 Comparison to slenderness limits in codes 
This section compares the results obtained from the parametric study to the slenderness limits in codes. To 
do so, the results are plotted in graphs that show on the x-axis the peak ground acceleration PGA and on the 
y-axis the slenderness ratio of the out-of-plane loaded wall (Figure 4.15). As in the previous section, a sepa-
rate graph is plotted for each input definition (inelastic vs elastic building model and =0 vs =1). Each 
building period and record leads to slightly different PGA values (Table 4.3). For this reason there are 15 
different PGA-values for each input definition. The four wall thicknesses lead to four different slenderness 
ratios since the storey height is constant (hw=2.8 m). Each graph contains therefore sixty data points. Each 
data point for a certain PGA-value and slenderness ratio represents four analyses for the four different axial 
load ratios. The marker is filled with white if none of these four walls failed and with black if all failed. The 
shades of grey reflect the percentage of walls that failed. As expected, the percentage of walls that failed 
tends to increase with increasing PGA-values and increasing slenderness ratios.  

The slenderness ratios in codes were summarised in Section 4.1. Three of these codes (SIA 2018, EC8 and 
NTC) provide the slenderness ratio as values that depend on the seismicity (all codes).  EC8 and NTC also 
prescribe minimum wall thicknesses. SIA 2018 accounts further for the building class and the position of the 
wall within the building (upper vs bottom storey). Assuming a wall in the upper storey of a building in a low 
seismicity region (Z3 for SIA 2018), which belongs to building class CO I, one obtains the following 
maximum slenderness ratios: 

 SIA 2018: (hw/tw)max = 17 
 EC8: (hw/tw)max = min(15, 2800/170=16.5) = 15 
 NTC: (hw/tw)max = min(20, 2800/200=14) = 14 

These limits are shown by grey lines in Figure 4.15. The percentage of wall failures is summarised in Table 
4.6. For the in-plane behaviour, a 5% fractile value is used [79] to which an additional safety factor is ap-
plied. If 5% wall failures is taken here as a first value, the slenderness ratio should lie between 11.2 and 16. 
The slenderness ratios proposed in EC8 and NTC would therefore satisfy this criterion while the SIA 2018 
criterion would lead to walls that are too vulnerable for out-of-plane loading.    
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Table 4.6: Parametric study: Percentage of wall failures in function of wall slenderness ratios and input 
definition (inelastic vs elastic building model and =0 vs =1). 

Percentage of wall failures tw=125 mm tw=150 mm tw=175 mm tw=250 mm 

hw/tw=22.4 hw/tw=18.7 hw/tw=16.0 hw/tw=11.2 

I1: Inelastic building model, =0 0.0% 0.0% 0.0% 0.0% 

I2: Elastic building model, =0 10.0% 5.0% 1.7% 0.0% 

I3: Inelastic building model, =1 15.0% 3.3% 3.3% 0.0% 

I4: Elastic building model, =1 40.0% 28.3% 28.3% 10.0% 

Average I1-4 16.3% 9.2% 8.3% 2.5% 

 

The slenderness limit in SIA 269/8, the new code for existing structures, depends explicitly on the PGA 
rather than on the seismic zone as in SIA 2018 (Equ. (4.)). In addition, a minimum thickness of tw,min=150 
mm is required. In Equ. (4.), the PGA corresponds to: ܲܣܩ =  ௙ܵܽ௚ௗߛ

 

(4.6)

Figure 4.15 shows the upper limit of the slenderness ratio and the limit obtained for min=1 and k=2 (RC 
slabs), which results in: ℎ௪ݐ௪ ≤ 2 ∙ ܣܩܲ݃ ≤ ඨ100݃ܲܣܩ  

 

(4.7)

For min=0.25 and k=2 one obtains: ℎ௪ݐ௪ ≤ 8 ∙ ܣܩܲ݃ ≤ ඨ100݃ܲܣܩ  

 

(4.8)

For min=1.0, almost all wall configurations would violate the slenderness criterion in SIA 269/8. For 
min=0.25, on the contrary, about two thirds of the wall configurations would pass the slenderness criterion. 
While the criterion seems to work rather well for Figure 4.15b and separates rather well wall configurations 
that fail from those that pass, this does not apply to Figure 4.15d. The difference between Figure 4.15b and d 
relates to the input motion at the top and bottom of the wall: Figure 4.15b represents analyses wherein the 
wall has been subjected to the same motion at the top and bottom while Figure 4.15d represents analyses 
where the input motions at the top and bottom differ, which represents the situation in real buildings. The 
current formulation in SIA 269/8 nor in any other code does not allow to account for the influence in 
difference between top and bottom excitation.  

Based on the observations from the shake table test that was presented in Chapter 3, the analyses that were 
carried out here approximate only the boundary conditions in buildings with RC slabs: In a building with RC 
slabs the vertical movement of the slabs is typically controlled by the walls that are loaded in-plane. If these 
walls deform chiefly in shear, the vertical uplift is small and if the out-of-plane loaded wall starts to rock, the 
axial force in the out-of-plane loaded wall increases. If the in-plane loaded wall rocks, this will lead to an 
uplift of the slab and the axial load in the out-of-plane loaded wall tends to zero. However, the axial force is 
only zero for a relative short time interval. Approximating these kinematic boundary conditions with a force-
boundary where the axial force is zero over the entire duration of the shaking, is therefore rather 
conservative. For this reason, also higher axial load ratios (1-4%) were investigated in the parametric study. 
For investigating the actual boundary conditions in buildings with RC slabs in more detail, a study that puts 
into relation the in-plane deformations of adjacent URM walls and the slab uplift is required.    

Based on the findings represented in Figure 4.15 the following recommendations can be formulated: 

- The peak ground acceleration is not the most suitable parameter to describe the demand on out-of-
plane loaded walls. The floor acceleration would be a better parameter since it would allow to 
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distinguish between the floor accelerations in elastic and inelastic buildings; it is discussed in the fol-
following.  

- The main limit functions that are proportional to 1/(minPGA) seems to vary too strongly with the 
demand parameter PGA. The upper bound function, which varies with the square root of this factor 
seems more appropriate.  

- As all other functions the slenderness limits in SIA 269/8 do not allow for the effect of different 
input motions at the top and bottom of the wall. This should be investigated further in the future. 

 

 

 

Figure 4.15: Parametric study: Comparison of results to slenderness limit in EC8, NTC and SIA D0237 (grey 
lines) and SIA 296/8 (red and blue line). Each circle represents the analyses with four different axial load 
ratios. The four plots show the results for different building models (inelastic / elastic) and input definitions 
(=0 and 1). 

 

As outlined above, the peak floor acceleration (PFA) would be a better parameter for describing the demand 
on the out-of-plane loaded walls than the peak ground acceleration (PGA). The graph shows that the 
following modified slenderness criterion seems to distinguish well between failures and passes for cases 
where the input definition at the top and bottom differs (i.e., as in reality). This applies for both the inelastic 
and the elastic building models: 
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ℎ௪ݐ௪ ≤ ඨ100݃ܲܣܨ  

 

(4.9)

For cases where the input motions at the top and bottom of the wall are equal, the criterion leads to 
conservative estimates of the wall slenderness that leads to failure. Before this criterion can be implemented 
in codes, further studies are required; these are outlined in Section 4.4.2.  

 

 

Figure 4.16: Parametric study: Comparison of results to a modified slenderness limit where the peak ground 
acceleration is replaced by the peak floor acceleration. Each circle represents the analyses with four different 
axial load ratios. The four plots show the results for different building models (inelastic / elastic) and input 
definitions (=0 and 1). 
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4.4 Summary and recommendations 

4.4.1 Summary 
In this chapter the results of a parametric study on out-of-plane loaded URM walls were presented and 
discussed. The 2D model that was used in this study represented a vertically spanning wall of fourteen brick 
rows. The wall had a height of 2.8 m and the thickness was varied between 12.5 and 25 cm. The model was 
analysed using the discrete element software UDEC [52]. An axial force that remained constant throughout 
the analysis was applied at the top of the wall. The axial load ratio was varied between 0 and 4%. The walls 
were analysed for different horizontal input motions. These input motions were applied to the model at the 
top and bottom slab that framed the wall. The input motions corresponded to the floor motions that were 
derived from five different ground motion records and three different 4-storey building models with 
fundamental periods of 0.3 s, 0.45 s and 0.6 s respectively. These models were analysed using the software 
Tremuri [10]; both elastic and inelastic behaviour of the in-plane loaded walls was considered. The out-of-
plane loaded walls that were analysed corresponded to walls of the fourth storey, i.e., to walls that were at 
their base supported by the third floor slab while the boundary condition at the top was provided by the 
fourth storey slab. The models were analysed for two sets of input motions: First, the average of the third and 
fourth floor motion was applied to the top and bottom slab, i.e., the top and bottom slab were subjected to the 
same motion. Second, the bottom slab was subjected to the third floor motion and the top slab to the fourth 
floor motion, i.e., the top and bottom slabs were subjected to different motions.  

The results of this parametric study confirmed the influence of a number of well-known parameters on the 
out-of-plane stability of URM walls when subjected to seismic loading (Section 4.3.3). The most important 
ones are summarised here: 

- The larger the wall thickness (i.e., the smaller the wall slenderness), the less vulnerable the wall to 
out-of-plane excitation.  

- The larger the applied axial load, the less vulnerable the wall to out-of-plane excitation. The analyses 
confirmed further the experimental observation by Dazio [11] that for an increase in axial load the 
transition from a stable behaviour to an out-of-plane failure is more sudden. 

Further, the vulnerability of the walls to out-of-plane failure also depends on the characteristics of the 
demand: 

- The response of buildings with shorter fundamental periods tend to lead to floor motions that are 
more demanding on out-of-plane loaded walls than buildings with longer fundamental periods. 

- The floor motions of buildings whose in-plane loaded walls respond inelastically are less demanding 
on out-of-plane loaded walls than the floor motions of buildings whose in-plane loaded walls 
respond elastically. This is because elastic building response leads to a stronger amplification of 
accelerations around the fundamental period of the building. Further, inelastic deformations lead to a 
lengthening of the fundamental period of the building. 

- The parametric study also supported the observation which was first observed from the small 
numerical study in the previous chapter (Section 3.4.1): Considering the fact that walls will be 
subjected to different input motions at the top and bottom leads to a considerably larger out-of-plane 
vulnerability of URM walls than subjecting top and bottom to the same average motion. The latter is 
the standard procedure in existing studies (e.g. [68]).  

The results of the parametric study were also compared to slenderness limits in codes in general and in 
particular to the new criterion included in SIA 269/8 [34]. With regard to the latter the comparison showed 
the following: 

- The slenderness criterion obtained for min=0.25 separates rather well between failures and passes if 
the walls are subjected to the same input motion at the top and bottom but it is unconservative if 
different input motions at the top and bottom of the wall are considered. 

- Using the peak ground acceleration as indicator for the demand does not account for the 
amplification of the motion at floor levels due to the building response. It further does not allow to 
account for the fundamental period of the building nor the effect of inelastic behaviour of the 
building on the amplification of floor accelerations.  

- The main limit functions that are proportional to 1/(minPGA) seems to vary too strongly with the 
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demand parameter PGA. The upper bound function, which varies with the square root of this factor 
seems more appropriate.  

 

4.4.2 Recommendations 
Based on the results obtained so far, the following recommendations for future revisions of SIA 269/8 can be 
formulated: 

- The peak floor acceleration rather than the peak ground acceleration should be taken as measure for 
the demand. 

- Empirical relations should be developed and included that estimate the peak floor accelerations PFA 
as a function of the fundamental period of the building and the level of inelastic deformations the 
structure is expected to undergo. Such relationships would not just be useful for the out-of-plane 
assessment of URM walls but for the seismic assessment of accelerations sensitive non-structural 
components. 

- The slenderness criterion should take a form similar to Equ. (4.9), i.e., the slenderness limit should 
be proportional to the square root of 1/(minPFA). 

The results should be supported by further studies. In addition to a model for estimating the peak floor 
acceleration, the following aspects require further investigation: 

- Same vs different input velocities at the top and bottom: The effect of the difference in input 
definition at the top and bottom of the wall should be studied. At the moment, the difference has 
only been observed from analysis but cannot be explained by a mechanical approach.  

- Uplift of slab due to rocking of adjacent walls: A model for the boundary conditions of the walls 
when uplift of the slab is considered should be developed. This would allow to describe better the 
boundary conditions in URM buildings with RC slabs. In this case, the axial load is only zero for a 
short instant in time and it is therefore expected that the vulnerability decreases with regard to the 
analysis for a zero axial load ratio. 

- Boundary conditions of walls that are connected to orthogonal walls: In this study a 2D model was 
analysed, which represented a vertically spanning wall, i.e., a wall whose vertical edges are not 
supported. In residential buildings, the walls are often connected to orthogonal walls, what reduces 
the vulnerability to out-of-plane excitation. The impact of such boundary conditions can only be 
analysed if 3D models are used. Such models would further allow to study the effect of window and 
door openings on the out-of-plane stability.  

- Near-field effects: In regions of low to moderate seismicity such as Switzerland, the seismic hazard 
is largely controlled by relatively close events, i.e., small epicentral distances. Such events can lead 
to ground motions that are characterised by a strong velocity pulse. The out-of-plane response of 
URM walls when the building is subjected to such near-field ground motions should be studied and 
compared to the response to ground motions without velocity pulse, which were used in this study.  

- Effect of other ground motion components: This study considered only the ground motion 
component orthogonal to the wall plane. In reality, there are two further components, i.e., the 
horizontal in-plane component and the vertical component. The vertical component will vary the 
axial load and is therefore expected to have a significant influence on the out-of-plane response. The 
in-plane component will only have an effect if the walls are also supported at their vertical edges; it 
can only be considered if 3D models rather than 2D models are used.  

- Sensitivity of results to mechanical properties of masonry: The sensitivity of the out-of-plane 
behaviour to mechanical properties of the masonry should be investigated. A small preliminary study 
showed that, for example, the tensile strength of the bed joint plays a significant role. 

- Comparison to other assessment methods: Nonlinear static assessment methods have been 
developed by Priestley [80] and Doherty et al. [68] and implemented in modified forms in the Italian 
code [70], [71]. These methods are significantly more elaborate than the slenderness criteria but are 
still simple enough to be applied as a standard procedure in seismic assessment. The results of these 
nonlinear static assessment methods should be benchmarked against the results obtained by means of 
the discrete element model. 
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6 SUMMARY OF PROJECT RESULTS 

This chapter summarises the data sets and documents that were published by the EESD laboratory on the 
seismic behaviour of modern URM structures with RC walls and on mixed structures with RC and URM 
walls. The chapter also comprises the PhD theses and Master theses that were completed on these topics.  

 

6.1 Data sets 
The results of the experimental campaigns that are presented in Chapter 1 have been curated in such a way 
that they can be used by others. They are publically available through the webpage 
http://eesd.epfl.ch/data_sets. 

 

6.2 Peer-reviewed journal publications 
All publications can be downloaded from the webpage http://eesd.epfl.ch/publications.  
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